80 research outputs found

    Simulation of beam-induced plasma in gas-filled rf cavities

    Full text link
    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. SPACE, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion and ion-ion recombination and electron attachment to dopant molecules, have been studied. Through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. The experimentally validated code SPACE is capable of predictive simulations of muon cooling devices.Comment: 10 pp. arXiv admin note: text overlap with arXiv:1709.0528

    Recent Progress of RF Cavity Study at Mucool Test Area

    Full text link
    In order to develop an RF cavity that is applicable for a muon beam cooling channel, a new facility, called Mucool Test Area (MTA) has been built at Fermilab. MTA is a unique facility whose purpose is to test RF cavities in various conditions. There are 201 and 805 MHz high power sources, a 4-Tesla solenoid magnet, a cryogenic system including a Helium liquifier, an explosion proof apparatus to operate gaseous/liquid Hydrogen, and a beam transport line to send an intense H- beam from the Fermilab Linac accelerator to the MTA hall. Recent activities at MTA will be discussed in this document.Comment: 4 pp. 13th International Workshop on Neutrino Factories, Superbeams and Beta beams (NuFact11) 1-6 Aug 2011: Geneva, Switzerlan

    Towards a Muon Collider

    Full text link
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Comment: 118 pages, 103 figure

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum:Towards a muon collider

    Get PDF
    LPT

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work
    corecore