80 research outputs found
Simulation of beam-induced plasma in gas-filled rf cavities
Processes occurring in a radio-frequency (rf) cavity, filled with high
pressure gas and interacting with proton beams, have been studied via advanced
numerical simulations. Simulations support the experimental program on the
hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and
broader research on the design of muon cooling devices. SPACE, a 3D
electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was
used in simulation studies. Plasma dynamics in the rf cavity, including the
process of neutral gas ionization by proton beams, plasma loading of the rf
cavity, and atomic processes in plasma such as electron-ion and ion-ion
recombination and electron attachment to dopant molecules, have been studied.
Through comparison with experiments in the MTA, simulations quantified several
uncertain values of plasma properties such as effective recombination rates and
the attachment time of electrons to dopant molecules. Simulations have achieved
very good agreement with experiments on plasma loading and related processes.
The experimentally validated code SPACE is capable of predictive simulations of
muon cooling devices.Comment: 10 pp. arXiv admin note: text overlap with arXiv:1709.0528
Recent Progress of RF Cavity Study at Mucool Test Area
In order to develop an RF cavity that is applicable for a muon beam cooling
channel, a new facility, called Mucool Test Area (MTA) has been built at
Fermilab. MTA is a unique facility whose purpose is to test RF cavities in
various conditions. There are 201 and 805 MHz high power sources, a 4-Tesla
solenoid magnet, a cryogenic system including a Helium liquifier, an explosion
proof apparatus to operate gaseous/liquid Hydrogen, and a beam transport line
to send an intense H- beam from the Fermilab Linac accelerator to the MTA hall.
Recent activities at MTA will be discussed in this document.Comment: 4 pp. 13th International Workshop on Neutrino Factories, Superbeams
and Beta beams (NuFact11) 1-6 Aug 2011: Geneva, Switzerlan
Recommended from our members
Superconducting helical solenoid systems for muon cooling experiment at Fermilab
Novel configurations of superconducting magnet system for Muon Beam Cooling Experiment is under design at Fermilab. The magnet system has to generate longitudinal and transverse dipole and quadrupole helical magnetic fields providing a muon beam motion along helical orbit. It was found that such complicated field configuration can be formed by a set of circular coils shifted in transverse directions in such a way that their centers lay on the center of the helical beam orbit. Closed beam orbit configurations were also proposed and investigated. This paper describes the magnetic and mechanical designs and parameters of such magnetic system based on a NbTi Rutherford type cable. The helical solenoid fabrication, assembly and quench protection issues are presented
Towards a Muon Collider
A muon collider would enable the big jump ahead in energy reach that is
needed for a fruitful exploration of fundamental interactions. The challenges
of producing muon collisions at high luminosity and 10 TeV centre of mass
energy are being investigated by the recently-formed International Muon
Collider Collaboration. This Review summarises the status and the recent
advances on muon colliders design, physics and detector studies. The aim is to
provide a global perspective of the field and to outline directions for future
work.Comment: 118 pages, 103 figure
Towards a muon collider
A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work
Towards a muon collider
A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work
- …