78 research outputs found

    Possible activation by the green tea amino acid theanine of mammalian target of rapamycin signaling in undifferentiated neural progenitor cells in vitro

    Get PDF
    AbstractWe have shown marked promotion of both proliferation and neuronal differentiation in pluripotent P19 cells exposed to the green tea amino acid theanine, which is a good substrate for SLC38A1 responsible for glutamine transport. In this study, we evaluated the activity of the mammalian target of rapamycin (mTOR) kinase pathway, which participates in protein translation, cell growth and autophagy in a manner relevant to intracellular glutamine levels, in murine neural progenitor cells exposed to theanine. Exposure to theanine promoted the phosphorylation of mTOR and downstream proteins in neurospheres from embryonic mouse neocortex. Although stable overexpression of SLC38A1 similarly facilitated phosphorylation of mTOR-relevant proteins in undifferentiated P19 cells, theanine failed to additionally accelerate the increased phosphorylation in these stable transfectants. Theanine accelerated the formation of neurospheres from murine embryonic neocortex and adult hippocampus, along with facilitation of both 5-bromo-2’-deoxyuridine incorporation and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction in embryonic neurospheres. In embryonic neurospheres previously exposed to theanine, a significant increase was seen in the number of cells immunoreactive for a neuronal marker protein after spontaneous differentiation. These results suggest that theanine activates the mTOR signaling pathway for proliferation together with accelerated neurogenesis in murine undifferentiated neural progenitor cells

    Difference of health-care associated pneumonia between large hospitals and small hospitals in Japan

    Get PDF
    Objective : Health-care associated pneumonia (HCAP) is a new category of pneumonia. We investigated differences of epidemiology, pathogens, and outcomes between HCAP patients in large hospitals and those in small hospitals. Methods : This was a retrospective observational study of patients hospitalized with HCAP from December 2009 to March 2010. HCAP was defined according to ATS/IDSA criteria. A large hospital was defined as 200 beds and a small hospital was 200 beds. Results : Of 117 patients, 61 patients were admitted to large hospitals and 56 patients were admitted to small hospitals. There was a significant difference of HCAP diagnostic criteria between the two groups. The A-DROP severity class was worse in the large hospital group than the small hospital group (P 0.05). Respiratory failure and disturbance of consciousness were more frequent in the large hospital group (P 0.05). The mortality rate was 8.2% in the large hospital group versus 1.8% in the small hospital group. Patients in the very severe A-DROP class had a high mortality rate of 33% in both groups. Conclusion : Patients with severe HCAP were more likely to be admitted to large hospitals. Patients in the very severe A-DROP class should receive intensive antibiotic therapy, but not all patients need broad-spectrum therapy

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Fecal Source Tracking in Water by Next-Generation Sequencing Technologies Using Host-Specific <i>Escherichia coli</i> Genetic Markers

    No full text
    High levels of fecal bacteria are a concern for the aquatic environment, and identifying sources of those bacteria is important for mitigating fecal pollution and preventing waterborne disease. <i>Escherichia coli</i> has been used as an indicator of fecal pollution, however less success has been achieved using this organism for library-independent microbial source tracking. In this study, using next-generation sequencing technology we sequenced the whole genomes of 22 <i>E. coli</i> isolates from known sources (9 from humans, 2 from cows, 6 from pigs, and 5 from chickens) and identified candidate host-specific genomic regions. Specificity testing on the candidate regions was performed using 30 <i>E. coli</i> isolates from each source. Finally, we identified 4 human-, 2 cow-, 3 pig-, and 4 chicken-specific genetic markers useful for source tracking. We also found that a combination of multiplex PCR and dual index sequencing is effective for detecting multiple genetic markers in multiple isolates at one time. This technique was applied to investigating identified genetic markers in 549 <i>E. coli</i> isolates obtained from the Yamato River, Japan. Results indicate that humans constitute a major source of water contamination in the river. However, further work must include isolates obtained from geographically diverse animal hosts to make this method more reliable

    Fecal Source Tracking in Water by Next-Generation Sequencing Technologies Using Host-Specific <i>Escherichia coli</i> Genetic Markers

    No full text
    High levels of fecal bacteria are a concern for the aquatic environment, and identifying sources of those bacteria is important for mitigating fecal pollution and preventing waterborne disease. <i>Escherichia coli</i> has been used as an indicator of fecal pollution, however less success has been achieved using this organism for library-independent microbial source tracking. In this study, using next-generation sequencing technology we sequenced the whole genomes of 22 <i>E. coli</i> isolates from known sources (9 from humans, 2 from cows, 6 from pigs, and 5 from chickens) and identified candidate host-specific genomic regions. Specificity testing on the candidate regions was performed using 30 <i>E. coli</i> isolates from each source. Finally, we identified 4 human-, 2 cow-, 3 pig-, and 4 chicken-specific genetic markers useful for source tracking. We also found that a combination of multiplex PCR and dual index sequencing is effective for detecting multiple genetic markers in multiple isolates at one time. This technique was applied to investigating identified genetic markers in 549 <i>E. coli</i> isolates obtained from the Yamato River, Japan. Results indicate that humans constitute a major source of water contamination in the river. However, further work must include isolates obtained from geographically diverse animal hosts to make this method more reliable

    Selective inhibition by ethanol of mitochondrial calcium influx mediated by uncoupling protein-2 in relation to N-methyl-D-aspartate cytotoxicity in cultured neurons.

    Get PDF
    BACKGROUND: We have shown the involvement of mitochondrial uncoupling protein-2 (UCP2) in the cytotoxicity by N-methyl-D-aspartate receptor (NMDAR) through a mechanism relevant to the increased mitochondrial Ca(2+) levels in HEK293 cells with acquired NMDAR channels. Here, we evaluated pharmacological profiles of ethanol on the NMDA-induced increase in mitochondrial Ca(2+) levels in cultured murine neocortical neurons. METHODOLOGY/PRINCIPAL FINDINGS: In neurons exposed to glutamate or NMDA, a significant increase was seen in mitochondrial Ca(2+) levels determined by Rhod-2 at concentrations of 0.1 to 100 µM. Further addition of 250 mM ethanol significantly inhibited the increase by glutamate and NMDA in Rhod-2 fluorescence, while similarly potent inhibition of the NMDA-induced increase was seen after exposure to ethanol at 50 to 250 mM in cultured neurons. Lentiviral overexpression of UCP2 significantly accelerated the increase by NMDA in Rhod-2 fluorescence in neurons, without affecting Fluo-3 fluorescence for intracellular Ca(2+) levels. In neurons overexpressing UCP2, exposure to ethanol resulted in significantly more effective inhibition of the NMDA-induced increase in mitochondrial free Ca(2+) levels than in those without UCP2 overexpression, despite a similarly efficient increase in intracellular Ca(2+) levels irrespective of UCP2 overexpression. Overexpression of UCP2 significantly increased the number of dead cells in a manner prevented by ethanol in neurons exposed to glutamate. In HEK293 cells with NMDAR containing GluN2B subunit, more efficient inhibition was similarly induced by ethanol at 50 and 250 mM on the NMDA-induced increase in mitochondrial Ca(2+) levels than in those with GluN2A subunit. Decreased protein levels of GluN2B, but not GluN2A, subunit were seen in immunoprecipitates with UCP2 from neurons with brief exposure to ethanol at concentrations over 50 mM. CONCLUSIONS/SIGNIFICANCE: Ethanol could inhibit the interaction between UCP2 and NMDAR channels to prevent the mitochondrial Ca(2+) incorporation and cell death after NMDAR activation in neurons
    corecore