18 research outputs found

    Molecular Mapping of the Thrombin-Heparin Cofactor II Complex

    Get PDF
    We used 55 Ala-scanned recombinant thrombin molecules to define residues important for inhibition by the serine protease inhibitor (serpin) heparin cofactor II (HCII) in the absence and presence of glycosaminoglycans. We verified the importance of numerous basic residues in anion-binding exosite-1 (exosite-1) and found 4 additional residues, Gln24, Lys65, His66, and Tyr71 (using the thrombin numbering system), that were resistant to HCII inhibition with and without glycosaminoglycans. Inhibition rate constants for these exosite-1 (Q24A, K65A, H66A, Y71A) thrombin mutants (0.02-0.38 x 10(8) m(-1) min(-1) for HCII-heparin when compared with 2.36 x 10(8) m(-1) min(-1) with wild-type thrombin and 0.03-0.53 x 10(8) m(-1) min(-1) for HCII-dermatan sulfate when compared with 5.23 x 10(8) m(-1) min(-1) with wild-type thrombin) confirmed that the structural integrity of thrombin exosite-1 is critical for optimal HCII-thrombin interactions in the presence of glycosaminoglycans. However, our results are also consistent for HCII-glycosaminoglycan-thrombin ternary complex formation. Ten residues surrounding the active site of thrombin were implicated in HCII interactions. Four mutants (Asp51, Lys52, Lys145/Thr147/Trp148, Asp234) showed normal increased rates of inhibition by HCII-glycosaminoglycans, whereas four mutants (Trp50, Glu202, Glu229, Arg233) remained resistant to inhibition by HCII with glycosaminoglycans. Using 11 exosite-2 thrombin mutants with 20 different mutated residues, we saw no major perturbations of HCII-glycosaminoglycan inhibition reactions. Collectively, our results support a "double bridge" mechanism for HCII inhibition of thrombin in the presence of glycosaminoglycans, which relies in part on ternary complex formation but is primarily dominated by an allosteric process involving contact of the "hirudin-like" domain of HCII with thrombin exosite-1

    Antimetastatic Potential of PAI-1 Specific RNA Aptamers

    Full text link
    The serine protease inhibitor plasminogen activator inhibitor-1 (PAI-1) is increased in several cancers, including breast, where it is associated with a poor outcome. Metastatic breast cancer has a dismal prognosis, as evidenced by treatment goals that are no longer curative but are largely palliative in nature. PAI-1 competes with integrins and the urokinase plasminogen activator receptor on the surface of breast cancer cells for binding to vitronectin. This results in the detachment of tumor cells from the extracellular matrix, which is critical to the metastatic process. For this reason, we sought to isolate RNA aptamers that disrupt the interaction between PAI-1 and vitronectin. Through utilization of combinatorial chemistry techniques, aptamers have been selected that bind to PAI-1 with high affinity and specificity. We identified two aptamers, WT-15 and SM-20, that disrupt the interactions between PAI-1 and heparin, as well as PAI-1 and vitronectin, without affecting the antiprotease activity of PAI-1. Furthermore, SM-20 prevented the detachment of breast cancer cells (MDA-MB-231) from vitronectin in the presence of PAI-1, resulting in an increase in cellular adhesion. Therefore, the PAI-1 aptamer SM-20 demonstrates therapeutic potential as an antimetastatic agent and could possibly be used as an adjuvant to traditional chemotherapy for breast cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78126/1/oli.2008.0177.pd

    A Chemical Genetic Screen for Modulators of Asymmetrical 2,2′-Dimeric Naphthoquinones Cytotoxicity in Yeast

    Get PDF
    BACKGROUND: Dimeric naphthoquinones (BiQ) were originally synthesized as a new class of HIV integrase inhibitors but have shown integrase-independent cytotoxicity in acute lymphoblastic leukemia cell lines suggesting their use as potential anti-neoplastic agents. The mechanism of this cytotoxicity is unknown. In order to gain insight into the mode of action of binaphthoquinones we performed a systematic high-throughput screen in a yeast isogenic deletion mutant array for enhanced or suppressed growth in the presence of binaphthoquinones. METHODOLOGY/PRINCIPAL FINDINGS: Exposure of wild type yeast strains to various BiQs demonstrated inhibition of yeast growth with IC(50)s in the microM range. Drug sensitivity and resistance screens were performed by exposing arrays of a haploid yeast deletion mutant library to BiQs at concentrations near their IC(50). Sensitivity screens identified yeast with deletions affecting mitochondrial function and cellular respiration as having increased sensitivity to BiQs. Corresponding to this, wild type yeast grown in the absence of a fermentable carbon source were particularly sensitive to BiQs, and treatment with BiQs was shown to disrupt the mitochondrial membrane potential and lead to the generation of reactive oxygen species (ROS). Furthermore, baseline ROS production in BiQ sensitive mutant strains was increased compared to wild type and could be further augmented by the presence of BiQ. Screens for resistance to BiQ action identified the mitochondrial external NAD(P)H dehydrogenase, NDE1, as critical to BiQ toxicity and over-expression of this gene resulted in increased ROS production and increased sensitivity of wild type yeast to BiQ. CONCLUSIONS/SIGNIFICANCE: In yeast, binaphthoquinone cytotoxicity is likely mediated through NAD(P)H:quonine oxidoreductases leading to ROS production and dysfunctional mitochondria. Further studies are required to validate this mechanism in mammalian cells

    Overview of the Therapeutic Potential of Aptamers Targeting Coagulation Factors

    No full text
    Aptamers are single-stranded DNA or RNA sequences that bind target molecules with high specificity and affinity. Aptamers exhibit several notable advantages over protein-based therapeutics. Aptamers are non-immunogenic, easier to synthesize and modify, and can bind targets with greater affinity. Due to these benefits, aptamers are considered a promising therapeutic candidate to treat various conditions, including hematological disorders and cancer. An active area of research involves developing aptamers to target blood coagulation factors. These aptamers have the potential to treat cardiovascular diseases, blood disorders, and cancers. Although no aptamers targeting blood coagulation factors have been approved for clinical use, several aptamers have been evaluated in clinical trials and many more have demonstrated encouraging preclinical results. This review summarized our knowledge of the aptamers targeting proteins involved in coagulation, anticoagulation, fibrinolysis, their extensive applications as therapeutics and diagnostics tools, and the challenges they face for advancing to clinical use

    Nature apps on Google Play April 2013

    No full text
    Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential

    Intracellular aptamers inhibit uPA activity.

    No full text
    <p><b>(A)</b> Intracellular uPA or (<b>B</b>) PAI-1 protein levels in cellular extracts of transfected and non-transfected MDA-MB-231 cells were analyzed by Western blot using an antibody to either uPA (A) or PAI-1 (<b>B</b>). (<b>A</b>) Top panel (short exposure) and the lower panel (longer exposure). Total protein concentration was determined and 21 μg protein was added at each experimental condition. The upper band corresponds to the PAI-1/uPA complex (<b>A-B</b>). (<b>C</b>) Intracellular uPA activity was determined in cellular extracts using a chromogenic assay in non-transfected cells (0) and cells transfected with 100 pmol RNA aptamers. Each experiment was performed at least three times with comparable results. **p<0.01, *p<0.05.</p

    Expression of RNA aptamers in HUVECs.

    No full text
    <p>(<b>A</b>) Total RNA was isolated from transfected (+) and non-transfected (-) cells, then RT-PCR analysis were performed. Expression of the aptamer, PAI-1, and β-actin is shown. N.B. The SM20 was assay was run separately and then added to the figure. (<b>B</b>) HUVECs transfected with aptamers (Sel2, SM20, and WT15) or non-transfected cells were added to vitronectin coated plates and incubated for 1 hour at 37°C. The non-adherent cells were removed and the adherent cells were assessed by an MTT assay analysis. The percent of adherent cells were normalized to the percent of cells adhering in the absence of aptamers. All reactions were done in triplicates and repeated at least twice times; error bars represent the standard deviation of the data. *p<0.05.</p

    Expression of RNA aptamers in MDA-MB-231 cells.

    No full text
    <p>(<b>A</b>) MDA-MB-231 cells were transfected with the aptamers (Sel2, SM20, and WT15). Total RNA was isolated from transfected (+) and non-transfected (-) cells, then RT-PCR analysis were performed. Expression of the aptamer, PAI-1, uPA, uPAR, and β-actin is shown. This experiment was repeated at least three independent times with similar results. (<b>B</b>) The transfected and non-transfected cells were plated in a 96-well dish and allowed to grow in serum containing media for 72 hours post-transfection. The first time point (0) was assessed at 24 hours post transfection. An MTT assay was performed 24 hour intervals. The data was normalized to control cells (set at 100%) at each given time point. Each data point was performed in triplicate. The experiments were repeated at least twice with similar results.</p

    Levels of secreted cytokines in the conditioned medium of transfected and non-transfected cells.

    No full text
    <p>Conditioned medium from cells transfected with either SM20 or WT15 and non-transfected cells were collected and assayed for cytokines expression as detailed in Materials and Methods. Data represent the average of three to four independent transfection experiments. Error bars represent the standard deviation of the data.</p
    corecore