7 research outputs found

    Correction of a mouse model of Menkes disease by the human Menkes gene

    Get PDF
    The brindled mouse is an accurate model of the fatal human X-linked copper deficiency disorder, Menkes disease. Males carrying the mutant allele of the Menkes gene orthologue Atp7a die in the second week of life. To determine whether the genetic defect in the brindled mice could be corrected by expression of the human Menkes gene, male transgenic mice expressing ATP7A from the chicken &beta;-actin composite promoter (CAG) were mated with female carriers of the brindled mutation (Atp7aMo-br). Mutant males carrying the transgene survived and were fertile but the copper defect was not completely corrected. Unexpectedly males corrected with one transgenic line (T25#5) were mottled and resembled carrier females, this effect appeared to be caused by mosaic expression of the transgene. In contrast, males corrected with another line (T22#2) had agouti coats. Copper concentrations in tissues of the rescued mutants also resembled those of the heterozygous females, with high levels in kidney (84.6 &plusmn; 4.9 &mu;g/g in corrected males vs. 137.0 &plusmn; 44.3 &mu;g/g in heterozygotes) and small intestine (15.6 &plusmn; 2.5 &mu;g/g in corrected males vs. 15.7 &plusmn; 2.8 &mu;g/g in heterozygotes). The results show that the Menkes defect in mice is corrected by the human Menkes gene and that adequate correction is obtained even when the transgene expression does not match that of the endogenous gene.<br /

    Alteration of copper physiology in mice overexpressing the human menkes protein ATP7A

    Full text link
    The Menkes protein (ATP7A) is defective in the Cu deficiency disorder Menkes disease and is an important contributor to the maintenance of physiological Cu homeostasis. To investigate more fully the role of ATP7A, transgenic mice expressing the human Menkes gene ATP7A from chicken beta-actin composite promoter (CAG) were produced. The transgenic mice expressed ATP7A in lung, heart, liver, kidney, small intestine, and brain but displayed no overt phenotype resulting from expression of the human protein. Immunohistochemical analysis revealed that ATP7A was found primarily in the cardiac muscle, smooth muscle of the lung, distal tubules of the kidney, intestinal enterocytes, and patches of hepatocytes, as well as in the hippocampus, cerebellum, and choroid plexus of the brain. In 60-day- and 300-day-old mice, Cu concentrations were reduced in most tissues, consistent with ATP7A playing a role in Cu efflux. The reduction in Cu was most pronounced in the hearts of older T22#2 females (24%), T22#2 males (18%), and T25#5 females (23%), as well as in the brains of 60-day-old T22#2 females and males (23% and 30%, respectively).<br /

    Heterozygous tx mice have an increased sensitivity to copper loading: implications for Wilson\u27s Disease carriers

    Full text link
    Wilson\u27s disease carriers constitute 1% of the human population. It is unknown whether Wilsons disease carriers are at increased susceptibility to copper overload when exposed to chronically high levels of ingested copper. This study investigated the effect of chronic excess copper in drinking water on the heterozygous form of the Wilson&rsquo;s disease mouse model &ndash; the toxic milk (tx) mouse. Mice were provided with drinking water containing 300 mg/l copper for 4&ndash;7, 8&ndash;11, 12&ndash;15 or 16&ndash;20 months. At the completion of the study liver, spleen, kidney and brain tissue were analyzed by atomic absorption spectroscopy to determine copper concentration. Plasma ceruloplasmin oxidase activity and liver histology were also assessed. Chronic copper loading resulted in significantly increased liver copper in both tx heterozygous and tx homozygous mice, while wild type mice were resistant to the effects of copper loading. Copper loading effects were greatest in tx homozygous mice, with increased extrahepatic copper deposition in spleen and kidney &ndash; an effect absent in heterozygote and wild type mice. Although liver histology in homozygous mice was markedly abnormal, no histological differences were noted between heterozygous and wild type mice with copper loading. Tx heterozygous mice have a reduced ability to excrete excess copper, indicating that half of the normal liver Atp7b copper transporter activity is insufficient to deal with large copper intakes. Our results suggest that Wilsons disease carriers in the human population may be at increased risk of copper loading if chronically exposed to elevated copper in food or drinking water.<br /
    corecore