78 research outputs found
Light dark matter in the NMSSM: upper bounds on direct detection cross sections
In the Next-to-Minimal Supersymmetric Standard Model, a bino-like LSP can be
as light as a few GeV and satisfy WMAP constraints on the dark matter relic
density in the presence of a light CP-odd Higgs scalar. We study upper bounds
on the direct detection cross sections for such a light LSP in the mass range
2-20 GeV in the NMSSM, respecting all constraints from B-physics and LEP. The
OPAL constraints on e^+ e^- -> \chi^0_1 \chi^0_i (i > 1) play an important role
and are discussed in some detail. The resulting upper bounds on the
spin-independent and spin-dependent nucleon cross sections are ~ 10^{-42}
cm^{-2} and ~ 4\times 10^{-40} cm^{-2}, respectively. Hence the upper bound on
the spin-independent cross section is below the DAMA and CoGeNT regions, but
could be compatible with the two events observed by CDMS-II.Comment: 17 pages, 3 figure
Relaxing the Higgs mass bound in singlet extensions of the MSSM
We show that the upper bound on the lightest Higgs mass in the MSSM is
relaxed by introducing a singlet which couples to the Higgs fields, even at a
large tan beta region, preferable for explaining the muon anomalous magnetic
moment. In the models of a singlet extension, it is known that the upper bound
is relaxed by a tree-level contribution, especially at small tan beta region.
For large tan beta, however, the requirement for the perturbativity on the
singlet-Higgs coupling up to the GUT scale prevents the lightest Higgs from
obtaining a large tree-level mass. We construct an explicit UV complete model
which allows large singlet-Higgs coupling at low energy without disturbing the
perturbativity. The UV completion can be applied for any singlet extension of
the MSSM. Moreover, we point out that the radiative correction from the
singlet-Higgs coupling becomes dominant, and the lightest Higgs mass can be
easily as heavy as 130 GeV if this coupling is large enough even for large tan
beta.Comment: 20 pages, 4 figures; the version to be publishe
Early glandular neoplasia of the lung
Although bronchogenic carcinomas progress through a very well defined sequence of metaplasia, dysplasia and carcinoma in situ, very little is known about the early progression of glandular neoplasms of the lung. In particular, the early precursor lesion from which fully malignant adenocarcinomas arise has effectively eluded recognition, at least until recently. Several lines of evidence now implicate atypical adenomatous hyperplasia (AAH) as an initial morphologic stage in multistep lung tumorigenesis. Despite its small size, AAH can be appreciated at the light microscopic level and characterized at the molecular genetic level. Indeed, the genetic characterization of AAH promises to further our understanding of lung cancer development and might facilitate the design of novel strategies for early detection of lung cancer
Human Gastric Mucins Differently Regulate Helicobacter pylori Proliferation, Gene Expression and Interactions with Host Cells
Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host
Hypermethylation-mediated reduction of WWOX expression in intraductal papillary mucinous neoplasms of the pancreas
We have previously shown that WW domain-containing oxidoreductase (WWOX) has tumour-suppressing effects and that its expression is frequently reduced in pancreatic carcinoma. In this study, we examined WWOX expression in intraductal papillary mucinous neoplasm of the pancreas (IPMN) to assess the function of WWOX in pancreatic duct tumourigenesis using immunohistochemistry and methylation-specific polymerase chain reaction analysis. Among 41 IPMNs including intraductal papillary mucinous adenomas (IPMAs) and intraductal papillary mucinous carcinomas (IPMCs), loss or reduced WWOX immunoreactivity was detected in 3 (15%) of 20 IPMAs and 17 (81%) of 21 IPMCs. In addition, hypermethylation of the WWOX regulatory site was detected in 1 (33%) of 3 WWOX(−) IPMAs and 9 (53%) of 17 WWOX(−) IPMCs, suggesting that hypermethylation may possibly be important in the suppression of WWOX expression. Reduction of WWOX expression was significantly correlated with a higher Ki-67 labelling index but was not correlated with the ssDNA apoptotic body index. Interestingly, decreased WWOX expression was significantly correlated with loss of SMAD4 expression in these IPMNs. The results indicate that downregulation of WWOX expression by the WWOX regulatory region hypermethylation is critical for transformation of pancreatic duct
A role for the tfs3 ICE-encoded type IV secretion system in pro-inflammatory signalling by the Helicobacter pylori Ser/Thr kinase, CtkA
Two distinct type IV secretion systems (T4SSs) can be identified in certain Helicobacter pylori strains, encoded on mobile genetic elements termed tfs3 and tfs4. Although their function remains unknown, both have been implicated in clinical outcomes of H. pylori infection. Here we provide evidence that the Tfs3 T4SS is required for activity of the pro-inflammatory Ser/Thr kinase protein, CtkA, in a gastric epithelial cell infection model. Previously, purified recombinant CtkA protein has been shown to upregulate NF-kappaB signalling and induce TNF-alpha and IL-8 cytokine secretion from cultured macrophages suggesting that it may potentiate the H. pylori-mediated inflammatory response. In this study, we show that CtkA expressed from its native host, H. pylori has a similar capacity for stimulation of a pro-inflammatory response from gastric epithelial cells. CtkA interaction was found to be dependent upon a complement of tfs3 T4SS genes, but independent of the T4SSs encoded by either tfs4 or the cag pathogenicity island. Moreover, the availability of CtkA for host cell interaction was shown to be conditional upon the carboxyl-terminus of CtkA, encoding a putative conserved secretion signal common to other variably encoded Tfs3 proteins. Collectively, our observations indicate a role for the Tfs3 T4SS in CtkA-mediated pro-inflammatory signalling by H. pylori and identify CtkA as a likely Tfs3 T4SS secretion substrate
Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice
The growth and spread of tumour cells depends on adequate vasculature. We have previously reported that the expression of interleukin-8 (IL-8) directly correlates with the vascularity of human gastric carcinomas. To provide evidence for a causal role of IL-8 in angiogenesis and tumorigenicity of human gastric cancer, we used the lipofectin method to stably transfect the human TMK-1 gastric carcinoma cells (low endogenous IL-8) with an IL-8 expression vector or control vector. Transfection with IL-8 did not affect the proliferation of cultured cells, yet the culture supernatants of the transfected (but not control) cells stimulated proliferation of human umbilical vein endothelial cells. The IL-8-transfected and control cells were injected into the gastric wall of nude mice. IL-8-transfected cells produced rapidly growing, highly vascular neoplasms as compared to control cells. These results provide direct evidence for the role of IL-8 in the angiogenesis and tumorigenicity of human gastric carcinomas. © 1999 Cancer Research Campaig
Newly established tumourigenic primary human colon cancer cell lines are sensitive to TRAIL-induced apoptosis in vitro and in vivo
Most data on the therapeutic potential of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) as well as resistance to FAS ligand (FASL) in colorectal cancer have come from in vitro studies using cell lines. To gain a clearer understanding about the susceptibility of patient tumours to TRAIL and FASL, we derived primary human cancer epithelial cells from colon cancer patients. Characterisation of primary cultures PAP60 and MIH55 determined their highly proliferating advantage, transforming capability and tumorigenicity in vitro and in vivo. Although FASL treatment appeared to cause little apoptosis only in the PAP60 primary culture, increased apoptosis independent of p53 was observed in both primary PAP60 and MIH55 and control cell lines Caco-2, HT29 and DLD-1 after treatment with SuperKiller TRAIL. Expression analysis of death receptors (DR) in the original parental tumours, the primary cultures before and after engraftment as well as the mouse xenografts, revealed a significant upregulation of both DR4 and DR5, which correlated to differences in sensitivity of the cells to TRAIL-induced apoptosis. Treating patient tumour xenograft/SCID mouse models with Killer TRAIL in vivo suppressed tumour growth. This is the first demonstration of TRAIL-induced apoptosis in characterised tumorigenic primary human cultures (in vitro) and antitumour activity in xenograft models (in vivo)
- …