7,806 research outputs found
Increasing d-wave superconductivity by on site repulsion
We study by Variational Monte Carlo an extended Hubbard model away from half
filled band density which contains two competing nearest-neighbor interactions:
a superexchange favoring d-wave superconductivity and a repulsion
opposing against it. We find that the on-site repulsion effectively
enhances the strength of meanwhile suppressing that of , thus favoring
superconductivity. This result shows that attractions which do not involve
charge fluctuations are very well equipped against strong electron-electron
repulsion so much to get advantage from it.Comment: 4 pages, 3 figure
Slow shocks and conduction fronts from Petschek reconnection of skewed magnetic fields: two-fluid effects
In models of fast magnetic reconnection, flux transfer occurs within a small
portion of a current sheet triggering stored magnetic energy to be thermalized
by shocks. When the initial current sheet separates magnetic fields which are
not perfectly anti-parallel, i.e. they are skewed, magnetic energy is first
converted to bulk kinetic energy and then thermalized in slow magnetosonic
shocks. We show that the latter resemble parallel shocks or hydrodynamic shocks
for all skew angles except those very near the anti-parallel limit. As for
parallel shocks, the structures of reconnection-driven slow shocks are best
studied using two-fluid equations in which ions and electrons have independent
temperature. Time-dependent solutions of these equations can be used to predict
and understand the shocks from reconnection of skewed magnetic fields. The
results differ from those found using a single-fluid model such as
magnetohydrodynamics. In the two-fluid model electrons are heated indirectly
and thus carry a heat flux always well below the free-streaming limit. The
viscous stress of the ions is, however, typically near the fluid-treatable
limit. We find that for a wide range of skew angles and small plasma beta an
electron conduction front extends ahead of the slow shock but remains within
the outflow jet. In such cases conduction will play a more limited role in
driving chromospheric evaporation than has been predicted based on
single-fluid, anti-parallel models
Lepton asymmetry in the primordial gravitational wave spectrum
Effects of neutrino free streaming is evaluated on the primordial spectrum of
gravitational radiation taking both neutrino chemical potential and masses into
account. The former or the lepton asymmetry induces two competitive effects,
namely, to increase anisotropic pressure, which damps the gravitational wave
more, and to delay the matter-radiation equality time, which reduces the
damping. The latter effect is more prominent and a large lepton asymmetry would
reduce the damping. We may thereby be able to measure the magnitude of lepton
asymmetry from the primordial gravitational wave spectrum.Comment: 14 pages, 5 figure
Mott Transitions and d-wave Superconductivity in Half-Filled-Band Hubbard Model on Square Lattice with Geometric Frustration
Mechanisms of Mott transitions and dx2-y2-wave superconductivity (SC) are
studied in the half-filled-band Hubbard model on square lattices with a
diagonal hopping term (t'), using an optimization (or correlated) variational
Monte Carlo method. In the trial wave functions, a doublon-holon binding effect
is introduced in addition to the onsite Gutzwiller projection. We mainly treat
a d-wave singlet state and a projected Fermi sea. In both wave functions,
first-order Mott transitions without direct relevance to magnetic orders take
place at U=Uc approximately of the bandwidth for arbitrary t'/t. These
transitions originate in the binding or unbinding of a doublon to a holon.
d-wave SC appears in a narrow range immediately below Uc. The robust d-wave
superconducting correlation are necessarily accompanied by enhanced
antiferromagnetic correlation; the strength of SC becomes weak, as t'/t
increases.Comment: 18 pages, 30 figure
Crossover of superconducting properties and kinetic-energy gain in two-dimensional Hubbard model
Superconductivity in the Hubbard model on a square lattice near half filling
is studied using an optimization (or correlated) variational Monte Carlo
method. Second-order processes of the strong-coupling expansion are considered
in the wave functions beyond the Gutzwiller factor. Superconductivity of
d_x^2-y^2-wave is widely stable, and exhibits a crossover around U=U_co\sim 12t
from a BCS type to a new type. For U\gsim U_co (U\lsim U_co), the energy gain
in the superconducting state is derived from the kinetic (potential) energy.
Condensation energy is large and \propto exp(-t/J) [tiny] on the strong [weak]
coupling side of U_co. Cuprates belong to the strong-coupling regime.Comment: 4 pages, 6 figure
Effects of Long-Range Correlations on Nonmagnetic Mott Transitions in Hubbard model on Square Lattice
The mechanism of Mott transition in the Hubbard model on the square lattice
is studied without explicit introduction of magnetic and superconducting
correlations, using a variational Monte Carlo method. In the trial wave
functions, we consider various types of binding factors between a
doubly-occupied site (doublon, D) and an empty site (holon, H), like a
long-range type as well as a conventional nearest-neighbor type, and add
independent long-range D-D (H-H) factors. It is found that a wide choice of D-H
binding factor leads to Mott transitions at critical values near the band
width. We renew the D-H binding picture of Mott transitions by introducing two
characteristic length scales, the D-H binding length l_{DH} and the minimum D-D
distance l_{DD}, which we appropriately estimate. A Mott transition takes place
at l_{DH}=l_{DD}. In the metallic regime (l_{DH}>l_{DD}), the domains of D-H
pairs overlap with one another, thereby doublons and holons can move
independently by exchanging the partners one after another. In contrast, the
D-D factors give only a minor contribution to the Mott transition.Comment: 13 pages, 18 figures, submitted to J. Phys. Soc. Jp
Variational Monte Carlo Studies of Pairing Symmetry for the t-J Model on a Triangular Lattice
As a model of a novel superconductor Na_xCoO_2\cdotyH_2O, a single-band t-J
model on a triangular lattice is studied, using a variational Monte Carlo
method. We calculate the energies of various superconducting (SC) states,
changing the doping rate \delta and sign of t for small J/|t|. Symmetries of s,
d, and d+id (p+ip and f) waves are taken up as candidates for singlet (triplet)
pairing. In addition, the possibility of Nagaoka ferromagnetism and
inhomogeneous phases is considered. It is revealed that, among the SC states,
the d+id wave always has the lowest energy, which result supports previous
mean-field studies. There is no possibility of triplet pairing, although the
f-wave state becomes stable against a normal state in a special case
(\delta=0.5 and t<0). For t<0, the complete ferromagnetic state is dominant in
a wide range of \delta and J/|t|, which covers the realistic parameter region
of superconductivity.Comment: 10 pages, 13 figure
Effect of Doublon-Holon Binding on Mott transition---Variational Monte Carlo Study of Two-Dimensional Bose Hubbard Models
To understand the mechanism of Mott transitions in case of no magnetic
influence, superfluid-insulator (Mott) transitions in the S=0 Bose Hubbard
model at unit filling are studied on the square and triangular lattices, using
a variational Monte Carlo method. In trial many-body wave functions, we
introduce various types of attractive correlation factors between a
doubly-occupied site (doublon, D) and an empty site (holon, H), which play a
central role for Mott transitions, in addition to the onsite repulsive
(Gutzwiller) factor. By optimizing distance-dependent parameters, we study
various properties of this type of wave functions. With a hint from the Mott
transition arising in a completely D-H bound state, we propose an improved
picture of Mott transitions, by introducing two characteristic length scales,
the D-H binding length and the minimum D-D exclusion length
. Generally, a Mott transition occurs when becomes
comparable to . In the conductive (superfluid) state, domains of
D-H pairs overlap with each other (); thereby D and
H can propagate independently as density carriers by successively exchanging
the partners. In contrast, intersite repulsive Jastrow (D-D and H-H) factors
have little importance for the Mott transition.Comment: 16 pages, 22 figures, submitted to J. Phys. Soc. Jp
- …