11,251 research outputs found

    Time variation of proton-electron mass ratio and fine structure constant with runaway dilaton

    Get PDF
    Recent astrophysical observations indicate that the proton-electron mass ratio and the fine structure constant have gone through nontrivial time evolution. We discuss their time variation in the context of a dilaton runaway scenario with gauge coupling unification at the string scale MsM_{\rm s}. We show that the choice of adjustable parameters allows them to fit the same order magnitude of both variations and their (opposite) signs in such a scenario.Comment: 16 pages, 1 figure, to appear in Phys. Rev.

    Quantum-number projection in the path-integral renormalization group method

    Full text link
    We present a quantum-number projection technique which enables us to exactly treat spin, momentum and other symmetries embedded in the Hubbard model. By combining this projection technique, we extend the path-integral renormalization group method to improve the efficiency of numerical computations. By taking numerical calculations for the standard Hubbard model and the Hubbard model with next nearest neighbor transfer, we show that the present extended method can extremely enhance numerical accuracy and that it can handle excited states, in addition to the ground state.Comment: 11 pages, 7 figures, submitted to Phys. Rev.

    Spontaneous exciton dissociation in carbon nanotubes

    Get PDF
    Simultaneous photoluminescence and photocurrent measurements on individual single-walled carbon nanotubes reveal spontaneous dissociation of excitons into free electron-hole pairs. Correlation of luminescence intensity and photocurrent shows that a significant fraction of excitons are dissociating during their relaxation into the lowest exciton state. Furthermore, the combination of optical and electrical signals also allows for extraction of the absorption cross section and the oscillator strength. Our observations explain the reasons for photoconductivity measurements in single-walled carbon nanotubes being straightforward despite the large exciton binding energies.Comment: 4 pages, 3 figure

    Effects of Long-Range Correlations on Nonmagnetic Mott Transitions in Hubbard model on Square Lattice

    Full text link
    The mechanism of Mott transition in the Hubbard model on the square lattice is studied without explicit introduction of magnetic and superconducting correlations, using a variational Monte Carlo method. In the trial wave functions, we consider various types of binding factors between a doubly-occupied site (doublon, D) and an empty site (holon, H), like a long-range type as well as a conventional nearest-neighbor type, and add independent long-range D-D (H-H) factors. It is found that a wide choice of D-H binding factor leads to Mott transitions at critical values near the band width. We renew the D-H binding picture of Mott transitions by introducing two characteristic length scales, the D-H binding length l_{DH} and the minimum D-D distance l_{DD}, which we appropriately estimate. A Mott transition takes place at l_{DH}=l_{DD}. In the metallic regime (l_{DH}>l_{DD}), the domains of D-H pairs overlap with one another, thereby doublons and holons can move independently by exchanging the partners one after another. In contrast, the D-D factors give only a minor contribution to the Mott transition.Comment: 13 pages, 18 figures, submitted to J. Phys. Soc. Jp

    Mott Transitions and d-wave Superconductivity in Half-Filled-Band Hubbard Model on Square Lattice with Geometric Frustration

    Full text link
    Mechanisms of Mott transitions and dx2-y2-wave superconductivity (SC) are studied in the half-filled-band Hubbard model on square lattices with a diagonal hopping term (t'), using an optimization (or correlated) variational Monte Carlo method. In the trial wave functions, a doublon-holon binding effect is introduced in addition to the onsite Gutzwiller projection. We mainly treat a d-wave singlet state and a projected Fermi sea. In both wave functions, first-order Mott transitions without direct relevance to magnetic orders take place at U=Uc approximately of the bandwidth for arbitrary t'/t. These transitions originate in the binding or unbinding of a doublon to a holon. d-wave SC appears in a narrow range immediately below Uc. The robust d-wave superconducting correlation are necessarily accompanied by enhanced antiferromagnetic correlation; the strength of SC becomes weak, as t'/t increases.Comment: 18 pages, 30 figure
    • …
    corecore