11,364 research outputs found
Time variation of proton-electron mass ratio and fine structure constant with runaway dilaton
Recent astrophysical observations indicate that the proton-electron mass
ratio and the fine structure constant have gone through nontrivial time
evolution. We discuss their time variation in the context of a dilaton runaway
scenario with gauge coupling unification at the string scale . We
show that the choice of adjustable parameters allows them to fit the same order
magnitude of both variations and their (opposite) signs in such a scenario.Comment: 16 pages, 1 figure, to appear in Phys. Rev.
Quantum-number projection in the path-integral renormalization group method
We present a quantum-number projection technique which enables us to exactly
treat spin, momentum and other symmetries embedded in the Hubbard model. By
combining this projection technique, we extend the path-integral
renormalization group method to improve the efficiency of numerical
computations. By taking numerical calculations for the standard Hubbard model
and the Hubbard model with next nearest neighbor transfer, we show that the
present extended method can extremely enhance numerical accuracy and that it
can handle excited states, in addition to the ground state.Comment: 11 pages, 7 figures, submitted to Phys. Rev.
Spontaneous exciton dissociation in carbon nanotubes
Simultaneous photoluminescence and photocurrent measurements on individual
single-walled carbon nanotubes reveal spontaneous dissociation of excitons into
free electron-hole pairs. Correlation of luminescence intensity and
photocurrent shows that a significant fraction of excitons are dissociating
during their relaxation into the lowest exciton state. Furthermore, the
combination of optical and electrical signals also allows for extraction of the
absorption cross section and the oscillator strength. Our observations explain
the reasons for photoconductivity measurements in single-walled carbon
nanotubes being straightforward despite the large exciton binding energies.Comment: 4 pages, 3 figure
Effects of Long-Range Correlations on Nonmagnetic Mott Transitions in Hubbard model on Square Lattice
The mechanism of Mott transition in the Hubbard model on the square lattice
is studied without explicit introduction of magnetic and superconducting
correlations, using a variational Monte Carlo method. In the trial wave
functions, we consider various types of binding factors between a
doubly-occupied site (doublon, D) and an empty site (holon, H), like a
long-range type as well as a conventional nearest-neighbor type, and add
independent long-range D-D (H-H) factors. It is found that a wide choice of D-H
binding factor leads to Mott transitions at critical values near the band
width. We renew the D-H binding picture of Mott transitions by introducing two
characteristic length scales, the D-H binding length l_{DH} and the minimum D-D
distance l_{DD}, which we appropriately estimate. A Mott transition takes place
at l_{DH}=l_{DD}. In the metallic regime (l_{DH}>l_{DD}), the domains of D-H
pairs overlap with one another, thereby doublons and holons can move
independently by exchanging the partners one after another. In contrast, the
D-D factors give only a minor contribution to the Mott transition.Comment: 13 pages, 18 figures, submitted to J. Phys. Soc. Jp
Mott Transitions and d-wave Superconductivity in Half-Filled-Band Hubbard Model on Square Lattice with Geometric Frustration
Mechanisms of Mott transitions and dx2-y2-wave superconductivity (SC) are
studied in the half-filled-band Hubbard model on square lattices with a
diagonal hopping term (t'), using an optimization (or correlated) variational
Monte Carlo method. In the trial wave functions, a doublon-holon binding effect
is introduced in addition to the onsite Gutzwiller projection. We mainly treat
a d-wave singlet state and a projected Fermi sea. In both wave functions,
first-order Mott transitions without direct relevance to magnetic orders take
place at U=Uc approximately of the bandwidth for arbitrary t'/t. These
transitions originate in the binding or unbinding of a doublon to a holon.
d-wave SC appears in a narrow range immediately below Uc. The robust d-wave
superconducting correlation are necessarily accompanied by enhanced
antiferromagnetic correlation; the strength of SC becomes weak, as t'/t
increases.Comment: 18 pages, 30 figure
- …