14,765 research outputs found

    Competition between hidden order and antiferromagnetism in URu_2Si_2 under uniaxial stress studied by neutron scattering

    Get PDF
    We have performed elastic neutron scattering experiments under uniaxial stress sigma applied along the tetragonal [100], [110] and [001] directions for the heavy electron compound URu2Si2. We found that antiferromagnetic (AF) order with large moment is developed with sigma along the [100] and [110] directions. If the order is assumed to be homogeneous, the staggered ordered moment mu_o continuously increases from 0.02 mu_B (sigma=0) to 0.22 mu_B (0.25 GPa). The rate of increase partial mu_o/partial sigma is ~ 1.0 mu_B/GPa, which is four times larger than that for the hydrostatic pressure (partial mu_o/partial P sim 0.25 mu_B/GPa). Above 0.25 GPa, mu_o shows a tendency to saturate, similar to the hydrostatic pressure behavior. For sigma||[001], mu_o shows only a slight increase to 0.028 mu_B (sigma = 0.46 GPa) with a rate of ~ 0.02 mu_B/GPa, indicating that the development of the AF state highly depends on the direction of sigma. We have also found a clear hysteresis loop in the isothermal mu_o(sigma) curve obtained for sigma||[110] under the zero-stress-cooled condition at 1.4 K. This strongly suggests that the sigma-induced AF phase is metastable, and separated from the "hidden order" phase by a first-order phase transition. We discuss these experimental results on the basis of crystalline strain effects and elastic energy calculations, and show that the c/a ratio plays a key role in the competition between these two phases.Comment: 9 pages, 7 figures, to appear in Physical Review

    Matter power spectrum in f(R) gravity with massive neutrinos

    Full text link
    The effect of massive neutrinos on matter power spectrum is discussed in the context of f(R)f(R) gravity. It is shown that the anomalous growth of density fluctuations on small scales due to the scalaron force can be compensated by free streaming of neutrinos. As a result, models which predict observable deviation of the equation-of-state parameter w_\DE from w_\DE=-1 can be reconciled with observations of matter clustering if the total neutrino mass is O(0.5 \eV).Comment: 8 pages, 6 figures; Discussion expanded, references added, results unchanged, matches the version to be published in PT

    Controllable spin transport in ferromagnetic graphene junctions

    Full text link
    We study spin transport in normal/ferromagnetic/normal graphene junctions where a gate electrode is attached to the ferromagnetic graphene. We find that due to the exchange field of the ferromagnetic graphene, spin current through the junctions has an oscillatory behavior with respect to the chemical potential in the ferromagnetic graphene, which can be tuned by the gate voltage. Especially, we obtain a controllable spin current reversal by the gate voltage. Our prediction of high controllability of spin transport in ferromagnetic graphene junction may contribute to the development of the spintronics.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev.

    Cosmology Based on f(R) Gravity Admits 1 eV Sterile Neutrinos

    Full text link
    It is shown that the tension between recent neutrino oscillation experiments, favoring sterile neutrinos with masses of the order of 1 eV, and cosmological data which impose stringent constraints on neutrino masses from the free streaming suppression of density fluctuations, can be resolved in models of the present accelerated expansion of the Universe based on f(R) gravity.Comment: 5 pages, 3 figures, matches the published version in Phys. Rev. Let
    • …
    corecore