16 research outputs found

    Angiogenic factors and their soluble receptors predict organ dysfunction and mortality in post-cardiac arrest syndrome

    Get PDF
    INTRODUCTION: Post-cardiac arrest syndrome (PCAS) often leads to multiple organ dysfunction syndrome (MODS) with a poor prognosis. Endothelial and leukocyte activation after whole-body ischemia/reperfusion following resuscitation from cardiac arrest is a critical step in endothelial injury and related organ damage. Angiogenic factors, including vascular endothelial growth factor (VEGF) and angiopoietin (Ang), and their receptors play crucial roles in endothelial growth, survival signals, pathological angiogenesis and microvascular permeability. The aim of this study was to confirm the efficacy of angiogenic factors and their soluble receptors in predicting organ dysfunction and mortality in patients with PCAS. METHODS: A total of 52 resuscitated patients were divided into two subgroups: 23 survivors and 29 non-survivors. The serum levels of VEGF, soluble VEGF receptor (sVEGFR)1, sVEGFR2, Ang1, Ang2 and soluble Tie2 (sTie2) were measured at the time of admission (Day 1) and on Day 3 and Day 5. The ratio of Ang2 to Ang1 (Ang2/Ang1) was also calculated. This study compared the levels of angiogenic factors and their soluble receptors between survivors and non-survivors, and evaluated the predictive value of these factors for organ dysfunction and 28-day mortality. RESULTS: The non-survivors demonstrated more severe degrees of organ dysfunction and a higher prevalence of MODS. Non-survivors showed significant increases in the Ang2 levels and the Ang2/Ang1 ratios compared to survivors. A stepwise logistic regression analysis demonstrated that the Ang2 levels or the Ang2/Ang1 ratios on Day 1 independently predicted the 28-day mortality. The receiver operating characteristic curves of the Ang2 levels, and the Ang2/Ang1 ratios on Day 1 were good predictors of 28-day mortality. The Ang2 levels also independently predicted increases in the Sequential Organ Failure Assessment (SOFA) scores. CONCLUSIONS: We observed a marked imbalance between Ang1 and Ang2 in favor of Ang2 in PCAS patients, and the effect was more prominent in non-survivors. Angiogenic factors and their soluble receptors, particularly Ang2 and Ang2/Ang1, are considered to be valuable predictive biomarkers in the development of organ dysfunction and poor outcomes in PCAS patients

    A combination of a DNA-chimera siRNA against PLK-1 and zoledronic acid suppresses the growth of malignant mesothelioma cells in vitro.

    Get PDF
    Although novel agents effective against malignant mesothelioma (MM) have been developed, the prognosis of patients with MM is still poor. We generated a DNA-chimeric siRNA against polo-like kinase-1 (PLK-1), which was more stable in human serum than the non-chimeric siRNA. The chimeric PLK-1 siRNA inhibited MM cell proliferation through the induction of apoptosis. Next, we investigated the effects of zoledronic acid (ZOL) on MM cells, and found that ZOL also induced apoptosis in MM cells. Furthermore, ZOL augmented the inhibitory effects of the PLK-1 siRNA. In conclusion, combining a PLK-1 siRNA with ZOL treatment is an attractive strategy against MM

    Expansion of EPOR-negative macrophages besides erythroblasts by elevated EPOR signaling in erythrocytosis mouse models

    Get PDF
    Activated erythropoietin (EPO) receptor (EPOR) signaling causes erythrocytosis. The important role of macrophages for the erythroid expansion and differentiation process has been reported, both in baseline and stress erythropoiesis. However, the significance of EPOR signaling for regulation of macrophages contributing to erythropoiesis has not been fully understood. Here we show that EPOR signaling activation quickly expands both erythrocytes and macrophages in vivo in mouse models of primary and secondary erythrocytosis. To mimic the chimeric condition and expansion of the disease clone in the polycythemia vera patients, we combined Cre-inducible Jak2V617F/+ allele with LysM-Cre allele which expresses in mature myeloid cells and some of the HSC/Ps (LysM-Cre;Jak2V617F/+ mice). We also generated inducible EPO-mediated secondary erythrocytosis models using Alb-Cre, Rosa26-loxP-stop-loxP-rtTA, and doxycycline inducible EPAS1-double point mutant (DPM) alleles (Alb-Cre;DPM mice). Both models developed a similar degree of erythrocytosis. Macrophages were also increased in both models without increase of major inflammatory cytokines and chemokines. EPO administration also quickly induced these macrophages in wild-type mice before observable erythrocytosis. These findings suggest that EPOR signaling activation could induce not only erythroid cell expansion, but also macrophages. Surprisingly, an in vivo genetic approach indicated that most of those macrophages do not express EPOR, but erythroid cells and macrophages contacted tightly with each other. Given the importance of the central macrophages as a niche for erythropoiesis, further elucidation of the EPOR signaling mediated-regulatory mechanisms underlying macrophage induction might reveal a potential therapeutic target for erythrocytosis

    シンキ BCR-ABL / Lyn ドウジ ソガイザイ INNO-406 ワ チュウスウ シンケイ ニ オイテ Ph+ ハッケツビョウ サイボウ ノ ゾウショク オ ヨクセイシ シクロスポリン A ワ in vivo デ INNO-406 ノ コウシュヨウ コウカ オ ゾウキョウスル

    No full text
    京都大学0048新制・課程博士博士(医学)甲第14902号医博第3387号新制||医||977(附属図書館)27340UT51-2009-M816京都大学大学院医学研究科医学専攻(主査)教授 武藤 誠, 教授 武田 俊一, 教授 松岡 雅雄, 教授 戸井 雅和学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDA

    Non-steady-state hematopoiesis regulated by the C/EBPβ transcription factor.

    Get PDF
    Steady-state hematopoiesis responds to extracellular stimuli to meet changing demands and also to pathologically altered intracellular signaling. Granulocyte production increases following infection or in response to cytokine stimulation, and activation of the CCAAT/enhancer-binding protein β (C/EBPβ) transcription factor is required for such stress-induced granulopoiesis, whereas C/EBPα plays a critical role in maintaining steady-state granulopoiesis. Different roles of these C/EBP transcription factors in different modes of hematopoiesis are evolutionally conserved from zebrafish to humans. In addition to reactions against infections, C/EBPβ is responsible for cancer-driven myelopoiesis, which promotes cancer progression, at least in part, by abrogating the immune response in the cancer microenvironment. The BCR–ABL fusion protein activates emergency-specific pathway of granulopoiesis by upregulating C/EBPβ. This in turn causes chronic phase chronic myeloid leukemia, which is characterized by myeloid expansion. The C/EBPβ transcription factor also plays a role in other hematological malignancies of both myeloid and lymphoid lineage origin. Thus, elucidation of the upstream and downstream networks surrounding C/EBPβ will lead to the development of novel therapeutic strategies for diseases mediated by non-steady-state hematopoiesis

    The role of angiogenic factors and their soluble receptors in acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) associated with critical illness

    No full text
    Abstract Background Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by a disruption of the endothelium and alveolar epithelial barriers involving increased microvascular permeability, thus resulting in the set of protein-rich pulmonary edema. Angiogenic factors and their receptors, including vascular endothelial growth factor (VEGF)/VEGF-receptor (VEGFR) and the angiopoietin (Ang)/Tie2 signaling pathways, play pivotal roles in both angiogenesis and microvascular permeability. The aim of the study was to assess the relationship between angiogenic factors, their soluble receptors and ALI/ARDS associated with critically ill patients, including sepsis, severe trauma, and post-cardiac arrest syndrome (PCAS). Methods One hundred fifty-nine critically ill patients, including 50 patients with sepsis, 57 patients with severe trauma and 52 resuscitated after out-of-hospital cardiac arrest, were divided into three subgroups: including 25 ALI patients, 101 ARDS patients and 22 non-ALI/ARDS patients. The serum levels of angiogenic factors were measured at the time of admission (day 1), as well as day 3 and day 5 and then were compared among the ALI, ARDS and non-ALI/ARDS groups. Their predictive values for developing ALI/ARDS and 28-day mortality were evaluated. Results Higher levels of sVEGFR1 and Ang2 were observed in the ALI and ARDS patients than in the non-ALI/ARDS patients during the entire study period. The Ang2/Ang1 ratio in the ARDS group was also significantly higher than that in the non-ALI/ADRS group. The sVEGFR2 levels in the ARDS group on day 1 were significantly lower than those of the non-ALI/ADRS group. In addition, significant positive correlations were seen between the sVEGFR1, Ang2, Ang2/Ang1, and the development of ALI/ARDS in critical illness. There were also significant negative correlations between the minimal value of sVEGFR2, the maximal value of Ang1 and the ALI/ARDS group. In particular, sVEGFR2 and Ang2 were independent predictors of developing ALI/ARDS. Moreover, Ang2 and sVEGFR2 also independently predicted the mortality in ALI/ARDS patients. Conclusions Angiogenic factors and their soluble receptors, particularly sVEGFR2 and Ang2, are thus considered to be valuable predictive biomarkers in the development of ALI/ARDS associated with critical illness and mortality in ALI/ARDS patients.</p

    Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer

    No full text
    The mainstay in the management of invasive bladder cancer continues to be radical cystectomy. With regard to improvement of quality of life, however, therapies that preserve the bladder are desirable. We investigated the use of intravesical PLK-1 small interfering RNA (siRNA) against bladder cancer. Patients with bladder cancers expressing high levels of PLK-1 have a poor prognosis compared with patients with low expression. Using siRNA/cationic liposomes, the expression of endogenous PLK-1 could be suppressed in bladder cancer cells in a time- and dose-dependent manner. As a consequence, PLK-1 functions were disrupted. Inhibition of bipolar spindle formation, accumulation of cyclin B1, reduced cell proliferation, and induction of apoptosis were observed. In order to determine the efficacy of the siRNA/liposomes in vivo, we established an orthotopic mouse model using a LUC-labeled bladder cancer cell line, UM-UC-3(LUC). PLK-1 siRNA was successfully transfected into the cells, reduced PLK-1 expression, and prevented the growth of bladder cancer in this mouse model. This is the first demonstration, to our knowledge, of inhibition of cancer growth in the murine bladder by intravesical siRNA/cationic liposomes. We believe intravesical siRNA instillation against bladder cancer will be useful as a therapeutic tool
    corecore