135 research outputs found

    Metal Allergy and Systemic Contact Dermatitis: An Overview

    Get PDF
    Contact dermatitis is produced by external skin exposure to an allergen, but sometimes a systemically administered allergen may reach the skin and remain concentrated there with the aid of the circulatory system, leading to the production of systemic contact dermatitis (SCD). Metals such as nickel, cobalt, chromium, and zinc are ubiquitous in our environment. Metal allergy may result in allergic contact dermatitis and also SCD. Systemic reactions, such as hand dermatitis or generalized eczematous reactions, can occur due to dietary nickel or cobalt ingestion. Zinc-containing dental fillings can induce oral lichen planus, palmoplantar pustulosis, and maculopapular rash. A diagnosis of sensitivity to metal is established by epicutaneous patch testing and oral metal challenge with metals such as nickel, cobalt, chromium, and zinc. In vitro tests, such as the lymphocyte stimulating test (LST), have some advantages over patch testing to diagnose allergic contact dermatitis. Additionally, the determination of the production of several cytokines by primary peripheral blood mononuclear cell cultures is a potentially promising in vitro method for the discrimination of metal allergies, including SCD, as compared with the LST

    The Traditional Japanese Formula Keishibukuryogan Inhibits the Production of Inflammatory Cytokines by Dermal Endothelial Cells

    Get PDF
    Keishibukuryogan (KBG) is one of the traditional herbal formulations widely administered to patients with blood stagnation for improving blood circulation; currently, it is the most frequently prescribed medicine in Japan. KBG has been reported to improve conjunctional microcirculation. The aim of this study was to evaluate the role of KBG and paeoniflorin, a bioactive compound of KBG, in inhibiting the production of inflammatory cytokines using human dermal microvessel endothelial cells (HDMECs). The authors observed that lipopolysaccharide (LPS; 1 μg/mL) stimulated the secretion of proinflammatory cytokines in HDMECs. KBG treatment (10 mg/mL) significantly suppressed the mRNA levels of migration inhibitory factor (MIF), interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α in LPS-stimulated cultured HDMECs. Similarly, paeoniflorin significantly suppressed the mRNA levels of these cytokines in LPS-stimulated cultured HDMECs. ELISA showed that KBG and paeoniflorin suppressed the production of MIF, IL-6, IL-8, and TNF-α in LPS-stimulated HDMECs. Moreover, KBG and paeoniflorin decreased the expression of cyclooxygenase-2 and inducible nitric oxide synthase (iNOS) in these cells. These results suggest that KBG may be useful for improving microvascular inflammation in patients with skin diseases

    Daytime nap and nighttime breastfeeding are associated with toddlers\u27 nighttime sleep

    Get PDF
    The purpose of the present study is to examine the association between toddlers\u27 sleep arrangements and their nighttime sleep duration and other sleep variables. For this investigation, we performed a study in which child activity and sleep levels were recorded using actigraphy. The parents of 1.5-year-old toddlers (n = 106) were asked to attach an actigraphy unit to their child’s waist with an adjustable elastic belt and complete a sleep diary for 7 consecutive days. Questionnaires were used to assess the sleep arrangements of the toddlers. There was a significant negative correlation between nap duration and nighttime sleep duration, suggesting that longer nap sleep induces shorter nighttime sleep duration. Among the sleep arrangements, such as nighttime breastfeeding or co-sleeping, only nighttime breastfeeding predicted shorter nighttime sleep duration. Our findings indicate that shorter naps induce a longer nighttime sleep in 1.5-year-old toddlers while nighttime breastfeeding decreases their nighttime sleep duration

    Sleep maturation influences cognitive development of preterm toddlers

    Get PDF
    Our recent study on full-term toddlers demonstrated that daytime nap properties affect the distribution ratio between nap and nighttime sleep duration in total sleep time but does not affect the overall total amount of daily sleep time. However, there is still no clear scientific consensus as to whether the ratio between naps and nighttime sleep or just daily total sleep duration itself is more important for healthy child development. In the current study, to gain an answer to this question, we examined the relationship between the sleep properties and the cognitive development of toddlers born prematurely using actigraphy and the Kyoto scale of psychological development (KSPD) test. 101 premature toddlers of approximately 1.5 years of age were recruited for the study. Actigraphy units were attached to their waist with an adjustable elastic belt for 7 consecutive days and a child sleep diary was completed by their parents. In the study, we found no significant correlation between either nap or nighttime sleep duration and cognitive development of the preterm toddlers. In contrast, we found that stable daily wake time was significantly associated with better cognitive development, suggesting that sleep regulation may contribute to the brain maturation of preterm toddlers

    Preterm toddlers have low nighttime sleep quality and high daytime activity.

    Get PDF
    A number of studies have been made on the sleep characteristics of children born preterm in an attempt to develop methods to address the sleep problems commonly observed among such children. However, the reported sleep characteristics from these studies vary depending on the observation methods used, i.e., actigraphy, polysomnography and questionnaire. In the current study, to obtain reliable data on the sleep characteristics of preterm-born children, we investigated the difference in sleep properties between 97 preterm and 97 term toddlers of approximately 1.5 years of age using actigraphy. Actigraphy units were attached to the toddlers’ waists with an adjustable elastic belt for 7 consecutive days, and a child sleep diary was completed by their parents. In the study, we found that preterm toddlers had more nocturnal awakenings and more daytime activity, suggesting that preterm-born children may have a different process of sleep development in their early development

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore