33 research outputs found

    Mdm2 RING Mutation Enhances p53 Transcriptional Activity and p53-p300 Interaction

    Get PDF
    The p53 transcription factor and tumor suppressor is regulated primarily by the E3 ubiquitin ligase Mdm2, which ubiquitinates p53 to target it for proteasomal degradation. Aside from its ubiquitin ligase function, Mdm2 has been believed to be capable of suppressing p53's transcriptional activity by binding with and masking the transactivation domain of p53. The ability of Mdm2 to restrain p53 activity by binding alone, without ubiquitination, was challenged by a 2007 study using a knockin mouse harboring a single cysteine-to-alanine point mutation (C462A) in Mdm2's RING domain. Mouse embryonic fibroblasts with this mutation, which abrogates Mdm2's E3 ubiquitin ligase activity without affecting its ability to bind with p53, were unable to suppress p53 activity. In this study, we utilized the Mdm2C462A mouse model to characterize in further detail the role of Mdm2's RING domain in the control of p53. Here, we show in vivo that the Mdm2C462A protein not only fails to suppress p53, but compared to the complete absence of Mdm2, Mdm2C462A actually enhances p53 transcriptional activity toward p53 target genes p21/CDKN1A, MDM2, BAX, NOXA, and 14-3-3σ. In addition, we found that Mdm2C462A facilitates the interaction between p53 and the acetyltransferase CBP/p300, and it fails to heterodimerize with its homolog and sister regulator of p53, Mdmx, suggesting that a fully intact RING domain is required for Mdm2's inhibition of the p300-p53 interaction and for its interaction with Mdmx. These findings help us to better understand the complex regulation of the Mdm2-p53 pathway and have important implications for chemotherapeutic agents targeting Mdm2, as they suggest that inhibition of Mdm2's E3 ubiquitin ligase activity may be sufficient for increasing p53 activity in vivo, without the need to block Mdm2-p53 binding

    Mdm2 RING Mutation Enhances p53 Transcriptional Activity and p53-p300 Interaction

    Get PDF
    The p53 transcription factor and tumor suppressor is regulated primarily by the E3 ubiquitin ligase Mdm2, which ubiquitinates p53 to target it for proteasomal degradation. Aside from its ubiquitin ligase function, Mdm2 has been believed to be capable of suppressing p53's transcriptional activity by binding with and masking the transactivation domain of p53. The ability of Mdm2 to restrain p53 activity by binding alone, without ubiquitination, was challenged by a 2007 study using a knockin mouse harboring a single cysteine-to-alanine point mutation (C462A) in Mdm2's RING domain. Mouse embryonic fibroblasts with this mutation, which abrogates Mdm2's E3 ubiquitin ligase activity without affecting its ability to bind with p53, were unable to suppress p53 activity. In this study, we utilized the Mdm2C462A mouse model to characterize in further detail the role of Mdm2's RING domain in the control of p53. Here, we show in vivo that the Mdm2C462A protein not only fails to suppress p53, but compared to the complete absence of Mdm2, Mdm2C462A actually enhances p53 transcriptional activity toward p53 target genes p21/CDKN1A, MDM2, BAX, NOXA, and 14-3-3σ. In addition, we found that Mdm2C462A facilitates the interaction between p53 and the acetyltransferase CBP/p300, and it fails to heterodimerize with its homolog and sister regulator of p53, Mdmx, suggesting that a fully intact RING domain is required for Mdm2's inhibition of the p300-p53 interaction and for its interaction with Mdmx. These findings help us to better understand the complex regulation of the Mdm2-p53 pathway and have important implications for chemotherapeutic agents targeting Mdm2, as they suggest that inhibition of Mdm2's E3 ubiquitin ligase activity may be sufficient for increasing p53 activity in vivo, without the need to block Mdm2-p53 binding

    p53-inducible DHRS3 Is an Endoplasmic Reticulum Protein Associated with Lipid Droplet Accumulation

    Get PDF
    The transcription factor p53 plays a critical role in maintaining homeostasis as it relates to cellular growth, proliferation, and metabolism. In an effort to identify novel p53 target genes, a microarray approach was utilized to identify DHRS3 (also known as retSDR1) as a robust candidate gene. DHRS3 is a highly conserved member of the short chain alcohol dehydrogenase/reductase superfamily with a reported role in lipid and retinoid metabolism. Here, we demonstrate that DHRS3 is an endoplasmic reticulum (ER) protein that is shuttled to the ER via an N-terminal endoplasmic reticulum targeting signal. One important function of the ER is synthesis of neutral lipids that are packaged into lipid droplets whose biogenesis occurs from ER-derived membranes. DHRS3 is enriched at focal points of lipid droplet budding where it also localizes to the phospholipid monolayer of ER-derived lipid droplets. p53 promotes lipid droplet accumulation in a manner consistent with DHRS3 enrichment in the ER. As a p53 target gene, the observations of Dhrs3 location and potential function provide novel insight into an unexpected role for p53 in lipid droplet dynamics with implications in cancer cell metabolism and obesity

    p53 upregulates PLCε-IP3-Ca2+ pathway and inhibits autophagy through its target gene Rap2B

    Get PDF
    The tumor suppressor p53 plays a pivotal role in numerous cellular responses as it regulates cell proliferation, metabolism, cellular growth, and autophagy. In order to identify novel p53 target genes, we utilized an unbiased microarray approach and identified Rap2B as a robust candidate, which belongs to the Ras-related GTP-binding protein superfamily and exhibits increased expression in various human cancers. We demonstrated that p53 increases the intracellular IP3 and Ca2+ levels and decreases the LC3 protein levels through its target gene Rap2B, suggesting that p53 can inhibit the autophagic response triggered by starvation via upregulation of the Rap2B-PLCε-IP3-Ca2+ pathway. As a confirmed target gene of p53, we believe that further investigating potential functions of Rap2B in autophagy and tumorigenesis will provide a novel strategy for cancer therapy

    Stacks and D-Brane Bundles

    Full text link
    In this paper we describe explicitly how the twisted ``bundles'' on a D-brane worldvolume in the presence of a nontrivial B field, can be understood in terms of sheaves on stacks. We also take this opportunity to provide the physics community with a readable introduction to stacks and generalized spaces.Comment: 24 pages, LaTeX; v2: references adde

    The anaphase-promoting complex/cyclosome is an E3 ubiquitin ligase for Mdm2

    Get PDF
    The Mdm2 proto-oncoprotein is the primary negative regulator for p53. While it is believed that Mdm2 degradation is regulated via its own E3 ubiquitin ligase activity, recent development of knock-in mouse models demonstrates that Mdm2 E3 ligase function is dispensable for self-degradation in vivo. Here, we show that the anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase for Mdm2 degradation. We demonstrate that APC2, a scaffold subunit of APC/C, binds to Mdm2 and is required for Mdm2 polyubiquitination and proteasomal degradation. Downregulation of APC2 by RNAi results in transcription-independent accumulation of Mdm2 and attenuation of stress-induced p53 stabilization, leading to decreased senescence and increased cell survival. Furthermore, APC2 expression is frequently downregulated in human cancers; in tumor cell lines, APC2 downregulation correlates with Mdm2 overexpression. Our study shows the regulation of Mdm2 by the E3 ubiquitin ligase APC/C and has important therapeutic implications for tumors with Mdm2 overexpression

    Targeted Inactivation of Mdm2 RING Finger E3 Ubiquitin Ligase Activity in the Mouse Reveals Mechanistic Insights into p53 Regulation

    Get PDF
    It is believed that Mdm2 suppresses p53 in two ways: transcriptional inhibition by direct binding, and degradation via its E3 ligase activity. To study these functions physiologically, we generated mice bearing a single-residue substitution (C462A) abolishing the E3 function without affecting p53 binding. Unexpectedly, homozygous mutant mice died before E7.5, and deletion of p53 rescued the lethality. Furthermore, reintroducing a switchable p53 by crossing with mice surprisingly demonstrated that the mutant Mdm2 was rapidly degraded in a manner indistinguishable from that of the wild-type Mdm2. Hence, our data indicate that (1) the Mdm2-p53 physical interaction, without Mdm2-mediated p53 ubiquitination, cannot control p53 activity sufficiently to allow early mouse embryonic development, and (2) Mdm2's E3 function is not required for Mdm2 degradation

    Role of Id-2 in the maintenance of a differentiated and noninvasive phenotype in breast cancer cells. Cancer Res

    Get PDF
    ABSTRACT Id proteins are inhibitors of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. We have shown that ectopic expression of Id-1 in murine mammary epithelial cells resulted in loss of differentiation and gain of invasive and proliferative abilities. Moreover, Id-1 was highly expressed in aggressive breast cancer cells in culture and in biopsies from infiltrating carcinomas. In contrast to Id-1, we found that, in vitro and in vivo, Id-2 mRNA and protein were up-regulated as mammary epithelial cells lost proliferative capacity and initiated differentiation. We further determined that this up-regulation of Id-2 was a necessary step toward a fully differentiated phenotype in breast cells. Here we show that one of the components of the extracellular matrix network, laminin, is responsible for the increase in Id-2 expression during differentiation. We also show that Id-2 expression is inversely correlated with the rate of proliferation in murine mammary epithelial cells and that Id-2 is expressed at a higher level in differentiated human breast cancer cells in comparison with very aggressive and metastatic cells. When reintroduced in aggressive breast cancer cells, Id-2 is able to reduce their proliferative and invasive phenotypes and decrease their level of matrix metalloproteinase 9 secretion as well as increase syndecan-1 expression. Moreover, little Id-2 protein expression is detectable in human biopsies from aggressive and invasive carcinomas in comparison with in situ carcinomas. In conclusion, Id-2 expression not only follows a pattern opposite to that of Id-1 during mammary gland development and breast cancer progression but also appears to act as an important protein for the maintenance of a differentiated and noninvasive phenotype in normal and transformed breast cells

    Emerging Roles of p53 Family Members in Glucose Metabolism

    No full text
    Glucose is the key source for most organisms to provide energy, as well as the key source for metabolites to generate building blocks in cells. The deregulation of glucose homeostasis occurs in various diseases, including the enhanced aerobic glycolysis that is observed in cancers, and insulin resistance in diabetes. Although p53 is thought to suppress tumorigenesis primarily by inducing cell cycle arrest, apoptosis, and senescence in response to stress, the non-canonical functions of p53 in cellular energy homeostasis and metabolism are also emerging as critical factors for tumor suppression. Increasing evidence suggests that p53 plays a significant role in regulating glucose homeostasis. Furthermore, the p53 family members p63 and p73, as well as gain-of-function p53 mutants, are also involved in glucose metabolism. Indeed, how this protein family regulates cellular energy levels is complicated and difficult to disentangle. This review discusses the roles of the p53 family in multiple metabolic processes, such as glycolysis, gluconeogenesis, aerobic respiration, and autophagy. We also discuss how the dysregulation of the p53 family in these processes leads to diseases such as cancer and diabetes. Elucidating the complexities of the p53 family members in glucose homeostasis will improve our understanding of these diseases

    Helix-loop-helix Id-1 and Id-2 in mammary gland development and breast cancer

    No full text
    corecore