4 research outputs found

    PsRBR1 encodes a pea retinoblastoma-related protein that is phosphorylated in axillary buds during dormancy-to-growth transition

    Get PDF
    In intact plants, cells in axillary buds are arrested at the G1 phase of the cell cycle during dormancy. In mammalian cells, the cell cycle is suppressed at the G1 phase by the activities of retinoblastoma tumor suppressor gene (RB) family proteins, depending on their phosphorylation state. Here, we report the isolation of a pea cDNA clone encoding an RB-related protein (PsRBR1, Accession No. AB012024) with a high degree of amino acid conservation in comparison with RB family proteins. PsRBR1 protein was detected as two polypeptides using an anti-PsRBR1 antibody in dormant axillary buds, whereas it was detected as three polypeptides, which were the same two polypeptides and another larger polypeptide 2 h after terminal decapitation. Both in vitro-synthesized PsPRB1 protein and lambda protein phosphatase-treated PsRBR1 protein corresponded to the smallest polypeptide detected by anti-PsRBR1 antibody, suggesting that the three polypeptides correspond to non-phosphorylated form of PsRBR1 protein, and lower- and higher-molecular mass forms of phosphorylated PsRBR1 protein. Furthermore, in vivo labeling with [32P]-inorganic phosphate indicated that PsRBR1 protein was more phosphorylated before mRNA accumulation of cell cycle regulatory genes such as PCNA. Together these findings suggest that dormancy-to-growth transition in pea axillary buds is regulated by molecular mechanisms of cell cycle control similar to those in mammals, and that the PsRBR1 protein has an important role in suppressing the cell cycle during dormancy in axillary buds

    Status of the Gen-IV Proliferation Resistance and Physical Protection (PRPP) Evaluation Methodology

    No full text
    Methodologies have been developed within the Generation IV International Forum (GIF) to support the assessment and improvement of system performance in the areas safeguards, security, economics and safety. Of these four areas, safeguards and security are the subjects of the GIF working group on Proliferation Resistance and Physical Protection (PRPP). Since the PRPP methodology (now at Revision 6) represents a mature, generic, and comprehensive evaluation approach, and is freely available on the GIF public website, several non-GIF technical groups have chosen to utilize the PRPP methodology for their own goals. Indeed, the results of the evaluations performed with the methodology are intended for three types of generic users: system designers, program policy makers, and external stakeholders. The PRPP Working Group developed the methodology through a series of demonstration and case studies. In addition, over the past few years various national and international groups have applied the methodology to inform nuclear energy system designs, as well as to support the development of approaches to advanced safeguards. A number of international workshops have also been held which have introduced the methodology to design groups and other stakeholders. In this paper we summarize the technical progress and accomplishments of the PRPP evaluation methodology, including applications outside GIF, and we outline the PRPP methodology’s relationship with the IAEA’s INPRO methodology. Current challenges with the efficient implementation of the methodology are outlined, along with our path forward for increasing its accessibility to a broader stakeholder audience – including supporting the next generation of skilled professionals in the nuclear non-proliferation field.JRC.E.8-Nuclear securit
    corecore