1,462 research outputs found

    Wealth inequalities in physical and cognitive impairments across Japan and Europe: the role of health expenditure and infrastructure

    Get PDF
    Although prior research has provided insights into the association between country-level factors and health inequalities, key research gaps remain. First, most previous studies examine subjective rather than objective health measures. Second, the wealth dimension in health inequalities is understudied. Third, a handful of studies explicitly focus on older adults. To bridge these research gaps, this study measures wealth-related inequalities in physical and cognitive impairments and examines the extent to which welfare states moderate wealth inequalities in physical and cognitive impairments among older people across Japan and Europe. We utilized harmonized data on non-institutionalized individuals aged 50–75 from the Japanese Study of Aging and Retirement (JSTAR) and the Survey of Health, Ageing and Retirement in Europe (SHARE) (N = 31,969 for physical impairments and 31,348 for cognitive impairments). Our multilevel linear regression analyses examined whether national public health spending and healthcare access resources explained cross-country differences in wealth inequalities in physical and cognitive impairments. We applied a concentration index to quantify the degree of wealth inequalities in impairments. The findings indicate that inequalities in both impairment outcomes favored wealthier individuals in all countries, but the magnitude of inequality varied by country. Furthermore, a higher share of public health spending, lower out-of-pocket expenditure, and higher investment in healthcare resources were associated with lower wealth inequalities, especially for physical impairments. Our findings suggest that different health interventions and policies may be needed to mitigate specific impairment inequalities

    Indoor PM₀.₁ and PM₂.₅ in Hanoi: Chemical characterization, source identification, and health risk assessment

    Get PDF
    This study attempted to provide comprehensive insights into the chemical composition, source identification, and health risk assessment of indoor particulate matter (PM) in urban areas of Vietnam. Three hundred and twenty daily samples of PM₀.₁ and PM₂.₅ were collected at three different types of dwellings in Hanoi in two seasons, namely summer and winter. The samples were analyzed for 10 trace elements (TEs), namely Cr, Mn, Co, Cu, Ni, Zn, As, Cd, Sn, and Pb. The daily average concentrations of indoor PM₀.₁ and PM₂.₅ in the city were in the ranges of 7.0–8.9 μg/m³ and 43.3–106 μg/m³, respectively. The average concentrations of TEs bound to indoor PM ranged from 66.2 ng/m³ to 216 ng/m³ for PM₀.₁ and 391 ng/m³ to 2360 ng/m³ for PM₂.₅. Principle component analysis and enrichment factor were applied to identify the possible sources of indoor PM. Results showed that indoor PM₂.₅ was mainly derived from outdoor sources, whereas indoor PM₀.₁ was derived from indoor and outdoor sources. Domestic coal burning, industrial and traffic emissions were observed as outdoor sources, whereas household dust and indoor combustion were found as indoor sources. 80% of PM₂.₅ was deposited in the head airways, whereas 75% of PM₀.₁ was deposited in alveolar region. Monte Carlo simulation indicated that the intake of TEs in PM₂.₅ can lead to high carcinogenic risk for people over 60 years old and unacceptable non-carcinogenic risks for all ages at the roadside house in winter

    Crystalline Silicate Feature of the Vega-like star HD145263

    Full text link
    We have observed the 8-13 μ\mum spectrum (R\sim250) of the Vega-like star candidate HD145263 using Subaru/COMICS. The spectrum of HD145263 shows the broad trapezoidal silicate feature with the shoulders at 9.3 μ\mum and 11.44 μ\mum, indicating the presence of crystalline silicate grains. This detection implies that crystalline silicate may also be commonly present around Vega-like stars. The 11.44 μ\mum feature is slightly shifted to a longer wavelength compared to the usual 11.2-3 μ\mum crystalline forsterite feature detected toward Herbig Ae/Be stars and T Tauri stars. Although the peak shift due to the effects of the grain size can not be ruled out, we suggest that Fe-bearing crystalline olivine explains the observed peak wavelength fairly well. Fe-bearing silicates are commonly found in meteorites and most interplanetary dust particles, which originate from planetesimal-like asteroids. According to studies of meteorites, Fe-bearing silicate must have been formed in asteroidal planetesimals, supporting the scenario that dust grains around Vega-like stars are of planetesimal origin, if the observed 11.44 μ\mum peak is due to Fe-bearing silicates.Comment: accepted for Publication in ApJ

    Analysis of growth patterns in purebred kambing Katjang goat and its crosses with the German fawn

    Get PDF
    The objective of this study was to investigate growth patterns of goats utilizing data from a crossbreeding program involving the exotic German Fawn (GF) and the indigenous Kambing Katjang (KK) goats. Growth curve models and growth curve parameters were compared and analyzed for different genotypes and litter types. A total of 20,393 weight–age data from 208 female goats belonging to various crossbreeding genotypes were individually fitted to four growth curve models (Brody, Bertalanffy, Gompertz and Logistic). The goodness of fit was highest in the Brody model in most cases. A comparison of R2 among genotypes showed that they were highest for KK. There were no significant differences of genotypes for estimated mature weight in the Brody model. The estimated mature weights for KK were significantly lower (P < 0.05) than for GF × KK (F1), backcrosses with 75% GF genes (BC) and F1 × F1 (F2) in the other models. The correlations between estimated mature weights and the maturing rates were lowest for BC. The genotype significantly (P < 0.01) affected the age at the constant degree of maturity (67% and 90% of mature weight) in all models. The BC genotype was the youngest at maturity and KK the oldest. All models well expressed the growth pattern of the target animals when they were older than 2.5 years of age. The results from the present study showed that the growth pattern may be altered by crossbreeding of KK with the GF breed

    Bidirectional Barbed Suture: An Evaluation of Safety and Clinical Outcomes

    Get PDF
    The use of bidirectional barbed suture appears to be safe for closing the vaginal cuff in a total laparoscopic hysterectomy and for closing the hysterotomy site during laparoscopic myomectomy

    Large Silicon Abundance in Photodissociation Regions

    Full text link
    We have made one-dimensional raster-scan observations of the rho Oph and sigma Sco star-forming regions with two spectrometers (SWS and LWS) on board the ISO. In the rho Oph region, [SiII] 35um, [OI] 63um, 146um, [CII] 158um, and the H2 pure rotational transition lines S(0) to S(3) are detected, and the PDR properties are derived as the radiation field scaled by the solar neighborhood value G_0~30-500, the gas density n~250--2500 /cc, and the surface temperature T~100-400 K. The ratio of [SiII] 35um to [OI] 146um indicates that silicon of 10--20% of the solar abundance must be in the gaseous form in the photodissociation region (PDR), suggesting that efficient dust destruction is undergoing even in the PDR and that part of silicon atoms may be contained in volatile forms in dust grains. The [OI] 63um and [CII] 158um emissions are too weak relative to [OI] 146um to be accounted for by standard PDR models. We propose a simple model, in which overlapping PDR clouds along the line of sight absorb the [OI] 63um and [CII] 158um emissions, and show that the proposed model reproduces the observed line intensities fairly well. In the sigma Sco region, we have detected 3 fine-structure lines, [OI] 63um, [NII] 122um, and [CII] 158um, and derived that 30-80% of the [CII] emission comes from the ionized gas. The upper limit of the [SiII] 35um is compatible with the solar abundance relative to nitrogen and no useful constraint on the gaseous Si is obtained for the sigma Sco region.Comment: 25 pages with 7 figures, accepted in Astrophysical Journa

    Electronic States in Silicon Quantum Dots: Multivalley Artificial Atoms

    Full text link
    Electronic states in silicon quantum dots are examined theoretically, taking into account a multivalley structure of the conduction band. We find that (i) exchange interaction hardly works between electrons in different valleys. In consequence electrons occupy the lowest level in different valleys in the absence of Hund's coupling when the dot size is less than 10 nm. High-spin states are easily realized by applying a small magnetic field. (ii) When the dot size is much larger, the electron-electron interaction becomes relevant in determining the electronic states. Electrons are accommodated in a valley, making the highest spin, to gain the exchange energy. (iii) In the presence of intervalley scattering, degenerate levels in different valleys are split. This could result in low-spin states. These spin states in multivalley artificial atoms can be observed by looking at the magnetic-field dependence of peak positions in the Coulomb oscillation.Comment: 18 pages, 5 figure
    corecore