15 research outputs found

    Stimulation of nuclear receptor REV-ERBs suppresses production of pronociceptive molecules in cultured spinal astrocytes and ameliorates mechanical hypersensitivity of inflammatory and neuropathic pain of mice

    Get PDF
    The orphan nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammatory-related gene transcription in astroglioma cells, but their role in nociceptive transduction has yet to be elaborated. Spinal dorsal horn astrocytes contribute to the maintenance of chronic pain. Treatment of cultured spinal astrocytes with specific REV-ERBs agonists SR9009 or GSK4112 significantly prevented lipopolysaccharide (LPS)-induced mRNA upregulation of pronociceptive molecules interleukin-1β (IL-1β) mRNA, interleukin-6 (IL-6) mRNA and matrix metalloprotease-9 (MMP-9) mRNA, but not CCL2 mRNA expression. Treatment with SR9009 also blocked tumor necrosis factor-induced IL-1β mRNA, IL-6 mRNA and MMP-9 mRNA. In addition, treatment with SR9009 significantly blocked LPS-induced upregulation of IL-1β protein, IL-6 protein and MMP-9 activity. The inhibitory effects of SR9009 on LPS-induced expression of pronociceptive molecules were blocked by knockdown of REV-ERBs expression with short interference RNA, confirming that SR9009 exerts its effect through REV-ERBs. Intrathecal LPS treatment in male mice induces hind paw mechanical hypersensitivity, and upregulation of IL-1β mRNA, IL-6 mRNA and glial fibrillary acidic protein (GFAP) expression in spinal dorsal horn. Intrathecal pretreatment of SR9009 prevented the onset of LPS-induced mechanical hypersensitivity, cytokine expression and GFAP expression. Intrathecal injection of SR9009 also ameliorated mechanical hypersensitivity during the maintenance phase of complete Freund’s adjuvant-induced inflammatory pain and partial sciatic nerve ligation-, paclitaxel-, and streptozotocin-induced neuropathy in mice. The current findings suggest that spinal astrocytic REV-ERBs could be critical in the regulation of nociceptive transduction through downregulation of pronociceptive molecule expression. Thus, spinal REV-ERBs could be an effective therapeutic target in the treatment of chronic pain.This work was supported by Grant-in-Aid for Scientific Research (C) grant number 26460342, and grants from the Takeda Science Foundation, Suzuken Memorial Foundation, The Uehara Memorial Foundation and The Nakatomi Foundation. Experiments were carried out using equipment at the Analysis Center of Life Science, Hiroshima University and the Research Center for Molecular Medicine, Faculty of Medicine, Hiroshima University

    Neuropathic Pain in Rats with a Partial Sciatic Nerve Ligation Is Alleviated by Intravenous Injection of Monoclonal Antibody to High Mobility Group Box-1

    Get PDF
    High mobility group box-1 (HMGB1) is associated with the pathogenesis of inflammatory diseases. A previous study reported that intravenous injection of anti-HMGB1 monoclonal antibody significantly attenuated brain edema in a rat model of stroke, possibly by attenuating glial activation. Peripheral nerve injury leads to increased activity of glia in the spinal cord dorsal horn. Thus, it is possible that the anti-HMGB1 antibody could also be efficacious in attenuating peripheral nerve injury-induced pain. Following partial sciatic nerve ligation (PSNL), rats were treated with either anti-HMGB1 or control IgG. Intravenous treatment with anti-HMGB1 monoclonal antibody (2 mg/kg) significantly ameliorated PSNL-induced hind paw tactile hypersensitivity at 7, 14 and 21 days, but not 3 days, after ligation, whereas control IgG had no effect on tactile hypersensitivity. The expression of HMGB1 protein in the spinal dorsal horn was significantly increased 7, 14 and 21 days after PSNL; the efficacy of the anti-HMGB1 antibody is likely related to the presence of HMGB1 protein. Also, the injury-induced translocation of HMGB1 from the nucleus to the cytosol occurred mainly in dorsal horn neurons and not in astrocytes and microglia, indicating a neuronal source of HMGB1. Markers of astrocyte (glial fibrillary acidic protein (GFAP)), microglia (ionized calcium binding adaptor molecule 1 (Iba1)) and spinal neuron (cFos) activity were greatly increased in the ipsilateral dorsal horn side compared to the sham-operated side 21 days after PSNL. Anti-HMGB1 monoclonal antibody treatment significantly decreased the injury-induced expression of cFos and Iba1, but not GFAP. The results demonstrate that nerve injury evokes the synthesis and release of HMGB1 from spinal neurons, facilitating the activity of both microglia and neurons, which in turn leads to symptoms of neuropathic pain. Thus, the targeting of HMGB1 could be a useful therapeutic strategy in the treatment of chronic pain

    Evaluation of intracellular signal molecules that regulate TLR4-stimulated inflammatory mediator expression in cultured rat chondrocytes

    No full text
    Osteoarthritis (OA) is characterized by inflammation of joints and degradation of articular cartilage matrix. As involvement of damage-associated molecular patterns (DAMPs) in the pathogenesis of OA has been reported, the present study comprehensively investigated the regulation of inflammatory mediator expression in chondrocytes mediated by Toll-like receptor 4 (TLR4), a receptor for DAMPs. Treatment of cultured rat chondrocytes with lipopolysaccharide (LPS) induced the mRNA expression of proinflammatory cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor [TNF]), matrix degradation enzymes (metalloproteinase [MMP] 3, MMP13), and inducible nitric oxide synthase (iNOS) through TLR4. Transforming growth factor β-activated kinase-1 (TAK1) and nuclear factor-κB (NF-κB) were crucial for the upregulated expression of these inflammatory mediators. The induction of IL-1β and TNF was regulated by extracellular signal-regulated kinase (ERK), while the induction of IL-6 was mediated by Tank-binding kinase 1 (TBK1) and c-Jun N-terminal kinase (JNK). The induction of MMP3 and MMP13 was regulated by TBK1, ERK, and JNK, while the induction of iNOS was mediated by ERK and JNK. In summary, some of the regulatory mechanisms underlying the expression of key inflammatory mediators for OA pathogenesis have been demonstrated. Further clarification may allow these signaling molecules to become new therapeutic targets for OA treatment strategies

    Paclitaxel and vinorelbine, evoked the release of substance P from cultured rat dorsal root ganglion cells through different PKC isoform-sensitive ion channels

    Get PDF
    Many patients suffer from serious adverse effects including respiratory distress and pulmonary edema during and after chemotherapy with paclitaxel or vinorelbine. These effects appear to be due to the activation of neurokinin-1 receptors. The present study investigated the influences of paclitaxel and vinorelbine on the substance P (sP) release from cultured dorsal root ganglion (DRG) cells using a radioimmunoassay. Both paclitaxel and vinorelbine evoked sP release in a dose- and time-dependent manner within 60 min at a concentration range of 0.1-10 mu M. The sP release levels induced by the two drugs were attenuated by pretreatment with the protein kinase Cs (PKCs) inhibitors (bisindolyimaieimide I and Go6976). Moreover, the paclitaxel- or vinorelbine-induced sP release was diminished in the absence of extracellular Ca2+ or the presence of LaCl3 (an extracellular Ca2+ influx blocker). A Ca2+ imaging assay further indicated that both paclitaxel and vinorelbine gradually increased the intracellular Ca2+ concentration, and these increases lasted for at least 15 min and were suppressed by Go6976. Paclitaxel caused the membrane translocation of only PKC beta within 10 min after stimulation, whereas vinorelbine induced the translocation of both PKC alpha and beta. The paclitaxel- and vinorelbine-induced sP release levels were separately inhibited by ruthenium red (a transient receptor potential (TRP) channel blocker) and gabapentin (an inhibitor of voltage-gated Ca2+ channels (VGCCs)). These findings suggest that paclitaxel and vinorelbine evoke the sP release from cultured DRG cells by the extracellular Ca2+ influx through TRP channels activated by PKC beta and VGCCs activated by both PKC alpha and beta, respectively

    Pretreatment with High Mobility Group Box-1 Monoclonal Antibody Prevents the Onset of Trigeminal Neuropathy in Mice with a Distal Infraorbital Nerve Chronic Constriction Injury

    No full text
    Persistent pain following orofacial surgery is not uncommon. High mobility group box 1 (HMGB1), an alarmin, is released by peripheral immune cells following nerve injury and could be related to pain associated with trigeminal nerve injury. Distal infraorbital nerve chronic constriction injury (dIoN-CCI) evokes pain-related behaviors including increased facial grooming and hyper-responsiveness to acetone (cutaneous cooling) after dIoN-CCI surgery in mice. In addition, dIoN-CCI mice developed conditioned place preference to mirogabalin, suggesting increased neuropathic pain-related aversion. Treatment of the infraorbital nerve with neutralizing antibody HMGB1 (anti-HMGB1 nAb) before dIoN-CCI prevented both facial grooming and hyper-responsiveness to cooling. Pretreatment with anti-HMGB1 nAb also blocked immune cell activation associated with trigeminal nerve injury including the accumulation of macrophage around the injured IoN and increased microglia activation in the ipsilateral spinal trigeminal nucleus caudalis. The current findings demonstrated that blocking of HMGB1 prior to nerve injury prevents the onset of pain-related behaviors, possibly through blocking the activation of immune cells associated with the nerve injury, both within the CNS and on peripheral nerves. The current findings further suggest that blocking HMGB1 before tissue injury could be a novel strategy to prevent the induction of chronic pain following orofacial surgeries

    Corticosterone Induces HMGB1 Release in Primary Cultured Rat Cortical Astrocytes: Involvement of Pannexin-1 and P2X7 Receptor-Dependent Mechanisms

    No full text
    A major risk factor for major depressive disorder (MDD) is stress. Stress leads to the release of high-mobility group box-1 (HMGB1), which in turn leads to neuroinflammation, a potential pathophysiological basis of MDD. The mechanism underlying stress-induced HMGB1 release is not known, but stress-associated glucocorticoids could be involved. To test this, rat primary cultured cortical astrocytes, the most abundant cell type in the central nervous system (CNS), were treated with corticosterone and HMGB1 release was assessed by Western blotting and ELISA. Significant HMGB1 was released with treatment with either corticosterone or dexamethasone, a synthetic glucocorticoid. HMGB1 translocated from the nucleus to the cytoplasm following corticosterone treatment. HMGB1 release was significantly attenuated with glucocorticoid receptor blocking. In addition, inhibition of pannexin-1, and P2X7 receptors led to a significant decrease in corticosterone-induced HMGB1 release. Taken together, corticosterone stimulates astrocytic glucocorticoid receptors and triggers cytoplasmic translocation and extracellular release of nuclear HMGB1 through a mechanism involving pannexin-1 and P2X7 receptors. Thus, under conditions of stress, glucocorticoids induce astrocytic HMGB1 release, leading to a neuroinflammatory state that could mediate neurological disorders such as MDD

    Neuropathic Pain in Rats with a Partial Sciatic Nerve Ligation Is Alleviated by Intravenous Injection of Monoclonal Antibody to High Mobility Group Box-1

    No full text
    High mobility group box-1 (HMGB1) is associated with the pathogenesis of inflammatory diseases. A previous study reported that intravenous injection of anti-HMGB1 monoclonal antibody significantly attenuated brain edema in a rat model of stroke, possibly by attenuating glial activation. Peripheral nerve injury leads to increased activity of glia in the spinal cord dorsal horn. Thus, it is possible that the anti-HMGB1 antibody could also be efficacious in attenuating peripheral nerve injury-induced pain. Following partial sciatic nerve ligation (PSNL), rats were treated with either anti-HMGB1 or control IgG. Intravenous treatment with anti-HMGB1 monoclonal antibody (2 mg/kg) significantly ameliorated PSNL-induced hind paw tactile hypersensitivity at 7, 14 and 21 days, but not 3 days, after ligation, whereas control IgG had no effect on tactile hypersensitivity. The expression of HMGB1 protein in the spinal dorsal horn was significantly increased 7, 14 and 21 days after PSNL; the efficacy of the anti-HMGB1 antibody is likely related to the presence of HMGB1 protein. Also, the injury-induced translocation of HMGB1 from the nucleus to the cytosol occurred mainly in dorsal horn neurons and not in astrocytes and microglia, indicating a neuronal source of HMGB1. Markers of astrocyte (glial fibrillary acidic protein (GFAP)), microglia (ionized calcium binding adaptor molecule 1 (Iba1)) and spinal neuron (cFos) activity were greatly increased in the ipsilateral dorsal horn side compared to the sham-operated side 21 days after PSNL. Anti-HMGB1 monoclonal antibody treatment significantly decreased the injury-induced expression of cFos and Iba1, but not GFAP. The results demonstrate that nerve injury evokes the synthesis and release of HMGB1 from spinal neurons, facilitating the activity of both microglia and neurons, which in turn leads to symptoms of neuropathic pain. Thus, the targeting of HMGB1 could be a useful therapeutic strategy in the treatment of chronic pain

    Effect of anti-HMGB1 monoclonal antibody on activation of spinal dorsal horn glial cells after PSNL.

    No full text
    <p>A, B. Immunofluorescence photomicrographs of spinal dorsal horn astrocytes (A) and microglia (B) from rats treated 2 hrs after with either anti-HMGB1 monoclonal antibody (2 mg/kg) or control IgG (2 mg/kg). Sham and PSNL rats were treated with antibody 21 days after operation. Scale bar  =  200 µm. C, D. High-power fields demonstrating morphological change of astrocytes (C) and microglia (D). Scale bar  =  20 µm. E, F. Levels of GFAP (E) and Iba1 (F) in the ipsilateral dorsal horn were quantified by Western blotting analysis. The panels indicate representative blots. The graph in lower panels indicates quantitative data for each blot. Protein levels were normalized to levels of β-actin. Data are expressed as mean ± SEM. n = 5/group. *, ** p<0.05, 0.01 compared with sham-control IgG group, † p<0.05 compared with PSNL-control IgG group (one-way ANOVA followed by Tukey-Kramer post hoc test).</p

    Distribution of HMGB1 expression in spinal dorsal horn neurons and glial cells.

    No full text
    <p>A-F. Double-labeling immunohistochemistry for HMGB-1 and NeuN (A, B, a marker for neurons), GFAP (C, D, a marker for astrocytes) or Iba1 (E, F, a marker for microglia) in the spinal dorsal horn of sham (A, C, E) and PSNL (B, D, F) rats 21 days following operation. DAPI was used to show nuclear localization. Scale bar  =  10 µm. G. Quantitative analysis of HMGB1 expression level in neurons, astrocytes and microglia at 21 days following operation. Data indicate the relative mean immunofluorescence intensity of a single cell. H. Quantitative analysis of the area of HMGB1 expression of neurons, astrocytes and microglia at 21 days following operation. Mean ratios of the area of HMGB1 immunofluorescence to the area of DAPI immunofluorescence are shown. Data are expressed as mean ± SEM. n = 6/group. * p<0.05 compared with sham group (Student’s t-test).</p
    corecore