270 research outputs found

    The relationship between childhood aerobic fitness and brain functional connectivity

    Get PDF
    AbstractSeveral studies have indicated that higher levels of childhood aerobic fitness is associated with superior cognitive function, and this association is disproportionately observed in tasks requiring greater top-down control. We designed the current study to clarify the relationship between childhood fitness and top-down control in terms of functional connectivity among brain regions, by evaluating phase-locking values (PLVs), which is a measure of frequency-specific phase synchrony between electroencephalographic signals during a visual search task. Lower-fit and higher-fit children performed a visual search task that included feature search and conjunction search conditions. The conjunction search condition required greater top-down control to reduce interference from task-irrelevant distractors that shared a basic feature with the target. Results indicated that higher-fit children exhibited higher response accuracy relative to lower-fit children across search conditions. The results of PLVs showed that higher-fit children had greater functional connectivity for the conjunction relative to the feature search condition, whereas lower-fit children showed no difference in functional connectivity between search conditions. Furthermore, PLVs showed different time courses between groups; that is, higher-fit children sustained upregulation of top-down control throughout the task period, whereas lower-fit children transiently upregulated top-down control after stimulus onset and could not sustain the upregulation. These findings suggest that higher levels of childhood aerobic fitness is related to brain functional connectivity involved in the sustained upregulation of top-down control

    Toll-Like Receptor 3 Signal in Dendritic Cells Benefits Cancer Immunotherapy

    Get PDF
    Pattern recognition receptors (PRRs) play a crucial role in the innate immune system and contribute to host defense against microbial infection. PRR-mediated antimicrobial signals provide robust type-I IFN/cytokine production and trigger inflammation, thereby affecting tumor progression and autoimmune diseases. Accumulating evidence demonstrates that among the PRRs, only the signaling pathway of endosomal toll-like receptor 3 (TLR3) induces no systemic inflammation and mediates cross-priming of antigen-specific CD8(+) T cells by dendritic cells. Treatment with a newly developed TLR3-specific ligand, ARNAX, along with tumor-associated antigens (TAAs), induces tumor-specific cytotoxic T lymphocytes, modulates the tumor microenvironment to establish Th1-type antitumor immunity, and leads to tumor regression without inflammation in mouse tumor models. Combination therapy using ARNAX/TAA and PD-1/PD-L1 blockade potently enhances antitumor response and overcomes anti-PD-1/PD-L1 resistance. In this review, we will discuss the TLR3-mediated signaling in antitumor immunity and its application to cancer immunotherapy

    A Case of Right Hepatic Artery Syndrome Diagnosed by Using SpyGlassDSTM System

    Get PDF
    We report the case of a 68-year-old woman who had abdominal pain and slightly elevated biliary enzymes. Magnetic resonance cholangiopancreatography detected biliary duct stenosis, while contrast-enhanced magnetic resonance imaging showed that the right hepatic artery transversed the extrahepatic bile duct at the level of bifurcation of the bile duct. We performed endoscopic retrograde cholangiopancreatography and peroral cholangioscopy with the SpyGlass DS? system. Then, mild extrinsic pulsatile compression of the bile duct was observed at stricture level with an intact bile duct epithelium. Therefore, she was diagnosed with right hepatic artery syndrome and underwent cholecystectomy. Six months later, her biliary enzyme level decreased, and the recurrence of pain gradually decreased

    Oligopeptide Transporter-1 is Associated with Fluorescence Intensity of 5-Aminolevulinic Acid-Based Photodynamic Diagnosis in Pancreatic Cancer Cells

    Get PDF
    [Background] The 5-aminolevulinic acid (ALA)-based photodynamic diagnosis is based on the accumulation of photosensitizing protoporphyrin IX in the tumor after ALA administration. However, the mechanisms connecting exogenous ALA and tumor fluorescence in pancreatic cancer remain unclear. We aimed to elucidate the mechanism underlying the ALA-induced fluorescent. [Methods] Human pancreatic duct epithelial cells (hPDECs) and pancreatic cancer cell lines were used. The expressions of ALA-associated enzymes and membrane transporters in these cell lines were investigated. ALA-induced fluorescence was also investigated. [Results] The expression of oligopeptide transporter-1 (PEPT-1), through which ALA is absorbed, was significantly higher in AsPC-1 cells and lower in MIA PaCa-2 cells than in hPDECs. AsPC-1 cells showed rapid and intense fluorescence after ALA administration, and that was attenuated by PEPT-1 inhibition. ALA-induced fluorescence was not sufficiently strong in MIA PaCa-2 cells to distinguish the cells from hPDECs. [Conclusion] We revealed the association of PEPT-1 with ALA-induced fluorescence. Cancers expressing PEPT-1 could be easily distinguished by this technique from normal cells. These findings help develop novel diagnostic modalities for pancreatic cancer

    Uniform Silica Coated Fluorescent Nanoparticles: Synthetic Method, Improved Light Stability and Application to Visualize Lymph Network Tracer

    Get PDF
    BACKGROUND: The sentinel lymph node biopsy (SLNB) was developed as a new modality in the surgical diagnosis of lymph node metastases. Dye and radioisotope are major tracers for the detection of sentinel lymph nodes (SLN). Dye tends to excessively infiltrate into the interstitium due to their small size (less than several nanometers), resulting in difficulties in maintaining clear surgical fields. Radioisotopes are available in limited number of hospitals. Fluorescent nanoparticles are good candidates for SLN tracer to solve these problems, as we can choose suitable particle size and fluorescence wavelength of near-infrared. However, the use of nanoparticles faces safety issues, and many attempts have been performed by giving insulating coats on nanoparticles. In addition, the preparation of the uniform insulating layer is important to decrease variations in the quality as an SLN tracer. METHODOLOGY/PRINCIPAL FINDINGS: We herein succeeded in coating fluorescent polystyrene nanoparticles of 40 nm with uniform silica layer of 13 nm by the modified Stöber method. The light stability of silica coated nanoparticles was 1.3-fold greater than noncoated nanoparticles. The popliteal lymph node could be visualized by the silica coated nanoparticles with injection in the rat feet. CONCLUSIONS/SIGNIFICANCE: The silica coated nanoparticles in lymph nodes could be observed by transmission electron microscope, suggesting that our silica coating method is useful as a SLN tracer with highly precise distribution of nanoparticles in histological evaluation. We also demonstrated for the first time that a prolonged enhancement of SLN is caused by the phagocytosis of fluorescent nanoparticles by both macrophages and dendritic cells

    Cholecalciferol Supplementation Attenuates Bone Loss in Incident Kidney Transplant Recipients: A Prespecified Secondary Endpoint Analysis of a Randomized Controlled Trial

    Full text link
    Vitamin D deficiency, persistent hyperparathyroidism, and bone loss are common after kidney transplantation (KTx). However, limited evidence exists regarding the effects of cholecalciferol supplementation on parathyroid hormone (PTH) and bone loss after KTx. In this prespecified secondary endpoint analysis of a randomized controlled trial, we evaluated changes in PTH, bone metabolic markers, and bone mineral density (BMD). At 1 month post-transplant, we randomized 193 patients to an 11-month intervention with cholecalciferol (4000 IU/d) or placebo. The median baseline 25-hydroxyvitamin D (25[OH]D) level was 10 ng/mL and 44% of participants had osteopenia or osteoporosis. At the end of the study, the median 25(OH)D level was increased to 40 ng/mL in the cholecalciferol group and substantially unchanged in the placebo group. Compared with placebo, cholecalciferol significantly reduced whole PTH concentrations (between-group difference of −15%; 95% confidence interval [CI] −25 to −3), with greater treatment effects in subgroups with lower 25(OH)D, lower serum calcium, or higher estimated glomerular filtration rate (pint < 0.05). The percent change in lumbar spine (LS) BMD from before KTx to 12 months post-transplant was −0.2% (95% CI −1.4 to 0.9) in the cholecalciferol group and −1.9% (95% CI −3.0 to −0.8) in the placebo group, with a significant between-group difference (1.7%; 95% CI 0.1 to 3.3). The beneficial effect of cholecalciferol on LS BMD was prominent in patients with low bone mass pint < 0.05). Changes in serum calcium, phosphate, bone metabolic markers, and BMD at the distal radius were not different between groups. In mediation analyses, change in whole PTH levels explained 39% of treatment effects on BMD change. In conclusion, 4000 IU/d cholecalciferol significantly reduced PTH levels and attenuated LS BMD loss after KTx. This regimen has the potential to eliminate vitamin D deficiency and provides beneficial effects on bone health even under glucocorticoid treatment. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).Tsujita M., Doi Y., Obi Y., et al. Cholecalciferol Supplementation Attenuates Bone Loss in Incident Kidney Transplant Recipients: A Prespecified Secondary Endpoint Analysis of a Randomized Controlled Trial. Journal of Bone and Mineral Research 37, 303 (2022); https://doi.org/10.1002/jbmr.4469
    corecore