21 research outputs found

    ATP-Induced Nuclear and Cytosolic Ca2+ Signal in Various Stages of Interphase HeLa/Fucci2 Cell

    Get PDF
    Cell cycle progression involves the coordination of growth, DNA replication and division in proliferating cells. These intracellular activities are linked with calcium signaling in which calcium ion (Ca2+) act as a second messenger or as an agent for phosphorylation processes. Previous studies have examined the Ca2+ in the dividing cells; however, none of these gave the detailed explanation on Ca2+ dynamics in an interphase cell. This study addresses here the issue of whether the nuclear and cytosolic Ca2+ concentrations ([Ca2+]n and [Ca2+]c) changes ar

    The Effects of Diuretics on Intracellular Ca2+ Dynamics of Arteriole Smooth Muscles as Revealed by Laser Confocal Microscopy

    Get PDF
    The regulation of cytosolic Ca2+ homeostasis is essential for cells, including vascular smooth muscle cells. Arterial tone, which underlies the maintenance of peripheral resistance in the circulation, is a major contributor to the control of blood pressure. Diuretics may regulate intracellular Ca2+ concentration ([Ca2+]i) and have an effect on vascular tone. In order to investigate the influence of diuretics on peripheral resistance in circulation, we investigated the alteration of [Ca2+]i in testicular arterioles with respect to several categories of diuretics using real-time confocal laser scanning microscopy. In this study, hydrochlorothiazide (100 µM) and furosemide (100 µM) had no effect on the [Ca2+]i dynamics. However, when spironolactone (300 µM) was applied, the [Ca2+]i of smooth muscles increased. The response was considerably inhibited under either extracellular Ca2+-free conditions, the presence of Gd3+, or with a treatment of diltiazem. After the thapsigargin-induced depletion of internal Ca2+ store, the spironolactone-induced [Ca2+]i dynamics was slightly inhibited. Therefore, the spironolactone-induced dynamics of [Ca2+]i can be caused by either a Ca2+ influx from extracellular fluid or Ca2+ mobilization from internal Ca2+ store, with the former being dominant. As tetraethylammonium, an inhibitor of the K+ channel, slightly inhibited the spironolactone-induced [Ca2+]i dynamics, the K+ channel might play a minor role in those dynamics. Tetrodotoxin, a neurotoxic Na+ channel blocker, had no effect, therefore the spironolactone-induced dynamics is a direct effect to smooth muscles, rather than an indirect effect via vessel nerves
    corecore