9 research outputs found

    Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    Get PDF
    Dengue virus (DENV) represents a major disease burden in tropical and subtropical regions of the world, and has shown an increase in the number of cases in recent years. DENV is transmitted to humans through the bite of an infected mosquito, typically Aedes aegypti, after which it begins the infection and replication lifecycle within human cells. To perform the molecular functions required for invasion, replication, and spread of the virus, proteins encoded by DENV must interact with and alter the behavior of protein networks in both of these hosts. In this work, we used a computational method based on protein structures to predict interactions between DENV and its human and insect hosts. We predict numerous interactions, with many involved in known cell death, stress, and immune system pathways. Further investigation of these predicted protein-protein interactions should provide targets to combat the clinical manifestations of this disease in humans as well as points of intervention focused within the mosquito vector

    Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3′ UTR structures

    No full text
    Dengue virus (DENV) is a rapidly re-emerging flavivirus that causes dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), diseases for which there are no available therapies or vaccines. The DENV-2 positive-strand RNA genome contains 5′ and 3′ untranslated regions (UTRs) that have been shown to form secondary structures required for virus replication and interaction with host cell proteins. In order to comprehensively identify host cell factors that bind the DENV-2 UTRs, we performed RNA chromatography, using the DENV-2 5′ and 3′ UTRs as “bait”, combined with quantitative mass spectrometry. We identified several proteins, including DDX6, G3BP1, G3BP2, Caprin1 and USP10, implicated in P body (PB) and stress granule (SG) function, and not previously known to bind DENV RNAs. Indirect immunofluorescence microscopy showed these proteins to colocalize with the DENV replication complex. Moreover, DDX6 knockdown resulted in reduced amounts of infectious particles and viral RNA in tissue culture supernatants following DENV infection. DDX6 interacted with DENV RNA in vivo during infection and in vitro this interaction was mediated by the DB1 and DB2 structures in the 3′ UTR, possibly by formation of a pseudoknot structure. Additional experiments demonstrate that, in contrast to DDX6, the SG proteins G3BP1, G3BP2, Caprin1 and USP10 bind to the variable region (VR) in the 3′ UTR. These results suggest that the DENV-2 3′ UTR is a site for assembly of PB and SG proteins and, for DDX6, assembly on the 3′ UTR is required for DENV replication
    corecore