167 research outputs found
Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars.
The adsorption mechanisms of lead (Pb2+) on four biochars (SB produced from British hardwood at 600°C and three standard biochars produced from wheat straw pellets at 700°C (WSP700), rice husk at 700°C (RH700) and soft wood pellets at 550°C (SWP550)) were characterised qualitatively and quantitatively, using a combination of chemical and micro-structural methods. Sequential extraction test results show that Pb2+ was predominantly adsorbed on SB (85.31%), WSP700 (75.61%) and RH700 (85.76%) as acidic soluble fraction, which was potentially bioavailable if applied in soil. The exchangeable fraction for SB, WSP700 and RH700 was low (1.38-4.29%) and their water soluble fraction was negligible (0-0.14%). Micro-structural analysis further investigated this fraction and confirmed the presence of cerussite (PbCO3) on SB and hydrocerussite (Pb3(CO3)2(OH)2) on WSP700, RH 700 and SWP550, suggesting a mechanism of surface precipitation for Pb2+ adsorption on the biochars. The percentages of Pb2+ in the form of PbCO3 on SB (82.24%) and Pb3(CO3)2(OH)2 on WSP700 (13.00%), RH 700 (19.19%) and SWP550 (29.70%) were quantified using thermogravimetric analysis (TGA). This study suggests that it is feasible to quantify different adsorption mechanisms of Pb2+ on biochars, which is important for the practical application of biochar in water and/or soil treatment
Comparison of nickel adsorption on biochars produced from mixed softwood and Miscanthus straw.
In order to understand the influence of feedstock type on biochar adsorption of heavy metals, the adsorption characteristics of nickel (Ni2+), copper (Cu2+) and lead (Pb2+) onto biochars derived from mixed softwood and Miscanthus straw were compared. The biochars were produced from mixed softwood pellets (SWP) and Miscanthus straw pellets (MSP), at both 550 and 700 °C for each material, using a standardised production procedure recommended by the UK Biochar Research Centre. Kinetics analyses show that the adsorption of Ni2+ to all four biochars reached equilibrium within 5 min. The degree of Ni2+ removal for all four biochars remained nearly constant within initial pH values of 3-8, because the equilibrium pH values within this range were similar due to the buffering effect of the biochars. A sharp increase of Ni2+ removal percentage for all biochars at initial solution pH 8-10 was observed as the equilibrium pH also increased. MSP derived biochars generally had higher maximum adsorption capacities (Qmax) for the three tested metals as compared with those from SWP, which was likely due to their higher degree of carbonisation during production. This study shows that feedstock type is a primary factor affecting the adsorption capacities of the tested biochars for heavy metals
Facile synthesis of Ag nanoparticles-decorated WO3 nanorods and their application in O2 sensing
Here we describe a two-step aerosol-assisted chemical vapor deposition (AACVD) synthesis method for the fabrication of Ag nanoparticles (NPs) decorated WO3 nanorods (NRs), evaluating the use of different organometallic silver precursors. Physical property characterization techniques including XRD, SEM, TEM, and XPS were carried out to investigate the composition and morphology of the pristine WO3 NRs and functionalized WO3 NRs with Ag NPs. The results showed that uniform WO3 NRs were obtained with a length of 600 nm to several μm and a diameter of 100–200 nm, and Ag NPs were well-dispersed on the surface of WO3 NRs with the size of 6–20 nm. The nanostructured WO3 thin films were synthesized and integrated directly onto alumina platforms via the AACVD method to fabricate gas sensors. Gas sensing performance was investigated towards different O2 concentrations between 1% and 20% at various operating temperatures. The sensing response revealed that an increase in baseline resistance was observed for the Ag-decorated WO3 sensors fabricated by using organometallic silver precursors, and the decoration of Ag NPs on WO3 sensors improved sensing properties as compared to the undecorated ones. The possible formation process and sensing mechanism of the Ag NPs decorated WO3 NRs are proposed
Oncogenic KRAS Drives Lipofibrogenesis to Promote Angiogenesis and Colon Cancer Progression
Oncogenic KRAS (KRAS*) contributes to many cancer hallmarks. In colorectal cancer, KRAS* suppresses antitumor immunity to promote tumor invasion and metastasis. Here, we uncovered that KRAS* transforms the phenotype of carcinoma-associated fibroblasts (CAF) into lipid-laden CAFs, promoting angiogenesis and tumor progression. Mechanistically, KRAS* activates the transcription factor CP2 (TFCP2) that upregulates the expression of the proadipogenic factors BMP4 and WNT5B, triggering the transformation of CAFs into lipid-rich CAFs. These lipid-rich CAFs, in turn, produce VEGFA to spur angiogenesis. In KRAS*-driven colorectal cancer mouse models, genetic or pharmacologic neutralization of TFCP2 reduced lipid-rich CAFs, lessened tumor angiogenesis, and improved overall survival. Correspondingly, in human colorectal cancer, lipid-rich CAF and TFCP2 signatures correlate with worse prognosis. This work unveils a new role for KRAS* in transforming CAFs, driving tumor angiogenesis and disease progression, providing an actionable therapeutic intervention for KRAS*-driven colorectal cancer
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
Measurements of psi(2S) decays to octet baryon-antibaryon pairs
With a sample of 14 million psi(2S) events collected by the BESII detector at
the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p
p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their
branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4,
(3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4,
respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter
alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
A Measurement of Psi(2S) Resonance Parameters
Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been
measured in the vicinity of the Psi(2S) resonance using the BESII detector
operated at the BEPC. The Psi(2S) total width; partial widths to hadrons,
pi+pi- J/Psi, muons; and corresponding branching fractions have been determined
to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)=
(2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)=
(97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%,
respectively.Comment: 8 pages, 6 figure
Measurements of the Mass and Full-Width of the Meson
In a sample of 58 million events collected with the BES II detector,
the process J/ is observed in five different decay
channels: , , (with ), (with
) and . From a combined fit of all five
channels, we determine the mass and full-width of to be
MeV/ and
MeV/.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
Measurement of \psip Radiative Decays
Using 14 million psi(2S) events accumulated at the BESII detector, we report
first measurements of branching fractions or upper limits for psi(2S) decays
into gamma ppbar, gamma 2(pi^+pi^-), gamma K_s K^-pi^++c.c., gamma K^+ K^-
pi^+pi^-, gamma K^{*0} K^- pi^+ +c.c., gamma K^{*0}\bar K^{*0}, gamma pi^+pi^-
p pbar, gamma 2(K^+K^-), gamma 3(pi^+pi^-), and gamma 2(pi^+pi^-)K^+K^- with
the invariant mass of hadrons below 2.9GeV/c^2. We also report branching
fractions of psi(2S) decays into 2(pi^+pi^-) pi^0, omega pi^+pi^-, omega
f_2(1270), b_1^\pm pi^\mp, and pi^0 2(pi^+pi^-) K^+K^-.Comment: 5 pages, 4 figure
- …