69 research outputs found

    SNORA38B promotes proliferation, migration, invasion and epithelial-mesenchymal transition of gallbladder cancer cells <em>via</em> activating TGF-β/Smad2/3 signaling

    Get PDF
    Evidence has shown that small nucleolar RNAs (snoRNAs) participate in the tumorigenesis in multiple cancers, including gallbladder cancer (GBC). Our results showed that SNORA38B level was increased in GBC tissues compared to adjacent normal tissues. Thus, this research aimed to explore the role and molecular mechanisms of SNORA38B in GBC. SNORA38B level between normal and GBC tissues was evaluated by RT-qPCR. Cell proliferation, apoptosis, migration, and invasion were tested by EdU assay, TUNEL staining and transwell assay, respectively on human intrahepatic biliary epithelial cells (HIBEpiCs) and the GBC cell lines, NOZ and GBC-SD. Expression of proteins in GBC cells was evaluated by immunofluorescence and Western blot assays. We found that, relative to normal tissues, SNORA38B level was notably elevated in GBC tissues. SNORA38B overexpression obviously enhanced GBC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), but weakened cell apoptosis. Conversely, SNORA38B downregulation strongly suppressed the proliferation and EMT of GBC cells and induced cell apoptosis and ferroptosis, whereas these phenomena were obviously reversed by TGF-β. Meanwhile, SNORA38B downregulation notably reduced the levels of phosphorylated-Smad2 and phosphorylated-Smad3 in GBC cells, whereas these levels were elevated by TGF-β. Collectively, downregulation of SNORA38B could inhibit GBC cell proliferation and EMT and induce ferroptosis via inactivating TGF-β1/Smad2/3 signaling. These findings showed that SNORA38B may be potential target for GBC treatment

    CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

    Get PDF
    Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery

    Scaling up genetic circuit design for cellular computing:advances and prospects

    Get PDF

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    A Network Study of Chinese Medicine Xuesaitong Injection to Elucidate a Complex Mode of Action with Multicompound, Multitarget, and Multipathway

    Get PDF
    Chinese medicine has evolved from thousands of years of empirical applications and experiences of combating diseases. It has become widely recognized that the Chinese medicine acts through complex mechanisms featured as multicompound, multitarget and multipathway. However, there is still a lack of systematic experimental studies to elucidate the mechanisms of Chinese medicine. In this study, the differentially expressed genes (DEGs) were identified from myocardial infarction rat model treated with Xuesaitong Injection (XST), a Chinese medicine consisting of the total saponins from Panax notoginseng (Burk.) F. H. Chen (Chinese Sanqi). A network-based approach was developed to combine DEGs related to cardiovascular diseases (CVD) with lines of evidence from the literature mining to investigate the mechanism of action (MOA) of XST on antimyocardial infarction. A compound-target-pathway network of XST was constructed by connecting compounds to DEGs validated with literature lines of evidence and the pathways that are functionally enriched. Seventy potential targets of XST were identified in this study, of which 32 were experimentally validated either by our in vitro assays or by CVD-related literatures. This study provided for the first time a network view on the complex MOA of antimyocardial infarction through multiple targets and pathways
    • …
    corecore