29 research outputs found

    Multiplexed Imaging of Osteocytes in Bone

    Get PDF

    Degeneration of the osteocyte network in the C57BL/6 mouse model of aging

    Get PDF
    Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young-(5mo) and aged-(22mo) C57BL/6 mice and changes in bone structure/geometry correlated with alterations in osteocyte parameters determined using novel multiplexed-3D-confocal imaging techniques. Age-related bone changes analogous to those in humans were observed, including increased cortical diameter, decreased cortical thickness, reduced trabecular BV/TV and cortical porosities. This was associated with a dramatic reduction in osteocyte dendrite number and cell density, particularly in females, where osteocyte dendricity decreased linearly from 5, 12, 18 to 22mo and correlated significantly with cortical bone parameters. Reduced dendricity preceded decreased osteocyte number, suggesting dendrite loss may trigger loss of viability. Age-related degeneration of osteocyte networks may impair bone anabolic responses to loading and gender differences in osteocyte cell body and lacunar fluid volumes we observed in aged mice may lead to gender-related differences in mechanosensitivity. Therapies to preserve osteocyte dendricity and viability may be beneficial for bone health in aging

    Decreased ventricular systolic function in chemotherapy-naive patients with acute myeloid leukemia: a three-dimensional speckle-tracking echocardiography study

    Get PDF
    BackgroundThe relationship between acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) and cardiac function is not well established. This study aimed to evaluate whether AML patients exist early myocardial damages prior to chemotherapy and to investigate its association with cardiovascular biomarkers.MethodsConventional echocardiography and three-dimensional speckle-tracking strain analysis were performed prospectively in 72 acute leukemia (AL) patients before any chemotherapy therapy (of whom 44 were AML patients, 28 ALL patients). The results were compared with those from 58 control group matched for age and gender.ResultsThere were no significant differences in conventional biventricular systolic function parameters between AL patients and controls. The left ventricular global longitudinal strain (LVGLS) and right ventricular free wall longitudinal strain (RVFWLS) were significantly lower in AL patients (−23.0 ± 1.4% vs. −24.1 ± 1.3% and −27.9 ± 7.1% vs. −33.0 ± 4.6%, respectively, P < 0.001 for all). Compared with ALL patients, AML patients had lower LVGLS and RVFWLS (−22.7 ± 1.3% vs. −23.5 ± 1.6% and −26.2 ± 7.6% vs. −30.4 ± 5.5%, respectively, P < 0.05 for all). LVGLS was lower in ALL patients compared with controls (−23.5 ± 1.6% vs. −24.7 ± 1.4%, P < 0.05), however, there was no difference in right ventricular systolic function parameters between the two groups. LVGLS in AL patients was independently correlated with left ventricular ejection fraction (LVEF) and the absolute number of circulating lymphocytes.ConclusionsOur findings suggest that baseline myocardial systolic function is lower in AL patients than controls. AML patients had lower baseline LVGLS and RVFWLS than controls and ALL patients. The decreased LVGLS is correlated with LVEF and the absolute number of circulating lymphocytes

    GEP, a Local Growth Factor, is Critical for Odontogenesis and Amelogenesis

    No full text
    Granulin epithelin precursor (GEP) is a new growth factor that functions in brain development, chondrogenesis, tissue regeneration, tumorigenesis, and inflammation. The goal of this study was to study whether GEP was critical for odontogenesis and amelogenesis both in vivo and in vitro. The in situ hybridization and immunohistochemistry data showed that GEP was expressed in both odontoblast and ameloblast cells postnatally. Knockdown of GEP by crossing U6-ploxPneo-GEP and Sox2-Cre transgenic mice led to a reduction of dentin thickness, an increase in predentin thickness, and a reduction in mineral content in enamel. The in vitro application of recombinant GEP up-regulated molecular markers important for odontogenesis (DMP1, DSPP, and ALP) and amelogenesis (ameloblastin, amelogenin and enamelin). In conclusion, both the in vivo and the in vivo data support an important role of GEP in tooth formation during postnatal development.</p

    Assessment of Left Atrial Structure and Function by Echocardiography in Atrial Fibrillation

    No full text
    Atrial fibrillation (AF) is the most common arrhythmia with significant morbidity and mortality. Exacerbated by the aging population, the prevalence of AF is gradually increasing. Accurate evaluation of structure and function of left atrium (LA) has important prognostic significance in patients with AF. Echocardiography is the imaging technique of first choice to assess LA structure and function due to its better availability, accessibility and safety over cardiac computed tomography and cardiac magnetic resonance. Therefore, the aim of this review is to summarize the recent research progress of evaluating LA size by three-dimensional echocardiography and LA function by speckle tracking echocardiography (STE) in predicting the occurrence and recurrence of AF and determining the risk of stroke in AF. In addition, we summarized the role of traditional echocardiography in detecting AF patients that are at high risk of heart failure or cardiovascular death

    Studies of the DMP1 57-kDa Functional Domain both in vivo and in vitro

    No full text
    Dmp1-null mice and patients with mutations in dentin matrix protein 1 (DMP1) resulting in autosomal recessive hypophosphatemic rickets display similar skeletal defects. As mutations were observed in the last 18 amino acids of DMP1 in 1 subset of patients and as fragments of intact DMP1, a 37-kDa N-terminal and a 57-kDa C-terminal fragment, have been purified from bone and dentin, we hypothesized that the cleaved 57-kDa C-terminal fragment is the essential functional domain of DMP1. To test this hypothesis, different forms of recombinant DMP1 were expressed in 293EBNA, CHO and 2T3 cells. The results showed that DMP1 was processed into a 37-kDa N-terminal and a 57-kDa C-terminal fragment in vitro in all cell lines examined. DMP1 processing in CHO cells was blocked by a furin protease inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone, in a dose-dependent manner. Coexpression of PHEX, a potential upstream protease, had no apparent effect on DMP1 cleavage in 293EBNA cells, suggesting that PHEX may not be required for DMP1 processing. To test the in vivo role of the C-terminal fragment, transgenic mice overexpressing full-length DMP1 or the 57-kDa fragment controlled by the 3.6-kb Col1 promoter were generated. Overexpression of these transgenes had no effect on the wild-type skeleton, but on the Dmp1-null background showed expression in the osteoblast layer and throughout the bone matrix leading to the rescue of the null bone phenotype. This suggests that the 57-kDa C-terminal fragment may be able to recapitulate the function of intact DMP1 in vivo

    Clinical Usefulness of Right Ventricle–Pulmonary Artery Coupling in Cardiovascular Disease

    No full text
    Right ventricular–pulmonary artery coupling (RV-PA coupling) refers to the relationship between RV contractility and RV afterload. Normal RV-PA coupling is maintained only when RV function and pulmonary vascular resistance are appropriately matched. RV-PA uncoupling occurs when RV contractility cannot increase to match RV afterload, resulting in RV dysfunction and right heart failure. RV-PA coupling plays an important role in the pathophysiology and progression of cardiovascular diseases. Therefore, early and accurate evaluation of RV-PA coupling is of great significance for a patient’s condition assessment, clinical decision making, risk stratification, and prognosis judgment. RV-PA coupling can be assessed by using invasive or noninvasive approaches. The aim of this review was to summarize the pathological mechanism and evaluation methods of RV-PA coupling, the advantages and disadvantages of each method, and the application value of RV-PA coupling in various cardiovascular diseases

    Clinical Usefulness of Speckle-Tracking Echocardiography in Patients with Heart Failure with Preserved Ejection Fraction

    No full text
    Heart failure with preserved ejection fraction (HFpEF) is defined as HF with left ventricular ejection fraction (LVEF) not less than 50%. HFpEF accounts for more than 50% of all HF patients, and its prevalence is increasing year to year with the aging population, with its prognosis worsening. The clinical assessment of cardiac function and prognosis in patients with HFpEF remains challenging due to the normal range of LVEF and the nonspecific symptoms and signs. In recent years, new echocardiographic techniques have been continuously developed, particularly speckle-tracking echocardiography (STE), which provides a sensitive and accurate method for the comprehensive assessment of cardiac function and prognosis in patients with HFpEF. Therefore, this article reviewed the clinical utility of STE in patients with HFpEF
    corecore