3 research outputs found

    Stretchable and Micropatterned Membrane for Osteogenic Differentation of Stem Cells

    No full text
    Stem cells have emerged as potentially useful cells for regenerative medicine applications. To fully harness this potential, it is important to develop in vitro cell culture platforms with spatially regulated mechanical, chemical, and biological cues to induce the differentiation of stem cells. In this study, a cell culture platform was constructed that used polydopamine (PDA)-coated parafilm. The modified parafilm supports cell attachment and proliferation. In addition, because of the superb plasticity and ductility of the parafilm, it can be easily micropatterned to regulate the spatial arrangements of cells, and can exert different mechanical tensions. Specifically, we constructed a PDA-coated parafilm with grooved micropatterns to induce the osteogenic differentiation of stem cells. Adipose-derived mesenchymal stem cells that were cultured on the PDA-coated parafilm exhibited significantly higher osteogenic commitment in response to mechanical and spatial cues compared to the ones without stretch. Our findings may open new opportunities for inducing osteogenesis of stem cells in vitro using the platform that combines mechanical and spatial cues

    Microfluidic Generation of Polydopamine Gradients on Hydrophobic Surfaces

    No full text
    Engineered surface-bound molecular gradients are of great importance for a range of biological applications. In this paper, we fabricated a polydopamine gradient on a hydrophobic surface. A microfluidic device was used to generate a covalently conjugated gradient of polydopamine (PDA), which changed the wettabilty and the surface energy of the substrate. The gradient was subsequently used to enable the spatial deposition of adhesive proteins on the surface. When seeded with human adipose mesenchymal stem cells, the PDA-graded surface induced a gradient of cell adhesion and spreading. The PDA gradient developed in this study is a promising tool for controlling cellular behavior and may be useful in various biological applications

    Simple, Cost-Effective 3D Printed Microfluidic Components for Disposable, Point-of-Care Colorimetric Analysis

    No full text
    The fabrication of microfluidic chips can be simplified and accelerated by three-dimensional (3D) printing. However, all of the current designs of 3D printed microchips require off-chip bulky equipment to operate, which hindered their applications in the point-of-care (POC) setting. In this work, we demonstrate a new class of movable 3D printed microfluidic chip components, including torque-actuated pump and valve, rotary valve, and pushing valve, which can be operated manually without any off-chip bulky equipment such as syringe pump and gas pressure source. By integrating these components, we developed a user-friendly 3D printed chip that can perform general colorimetric assays. Protein quantification was performed on artificial urine samples as a proof-of-concept model with a smartphone used as the imaging platform. The protein was quantified linearly and was within the physiologically relevant range for humans. We believe that the demonstrated components and designs can expand the functionalities and potential applications of 3D printed microfluidic chip and thus provoke more investigation on manufacturing lab-on-a-chip devices by 3D printers
    corecore