34 research outputs found

    Performance enhancement of SSI-LEDs and geometrically confinement of lighting dots by using patterned wafer approaches

    Get PDF
    Solid state incandescent light emitting devices (SSI-LEDs) were first demonstrated in 2013 by Kuo’s group, which have the metal-oxide-semiconductor structure and emit white light directly1. The conductive filaments (CFs) through CAFM figures out that Si wafer has a significant impact on the device performance2, 3, multiplayer dielectric layers structure have also been study to enhance the light emission4. We demonstrate two approaches to improve the performance of SSI-LEDs by using patterned wafer in this work. Please click Additional Files below to see the full abstract

    Identification of diagnostic model in heart failure with myocardial fibrosis and conduction block by integrated gene co-expression network analysis

    No full text
    Abstract Background Despite the advancements in heart failure(HF) research, the early diagnosis of HF continues to be a challenging issue in clinical practice. This study aims to investigate the genes related to myocardial fibrosis and conduction block, with the goal of developing a diagnostic model for early treatment of HF in patients. Method The gene expression profiles of GSE57345, GSE16499, and GSE9128 were obtained from the Gene Expression Omnibus (GEO) database. After merging the expression profile data and adjusting for batch effects, differentially expressed genes (DEGs) associated with conduction block and myocardial fibrosis were identified. Gene Ontology (GO) resources, Kyoto Encyclopedia of Genes and Genomes (KEGG) resources, and gene set enrichment analysis (GSEA) were utilized for functional enrichment analysis. A protein-protein interaction network (PPI) was constructed using a string database. Potential key genes were selected based on the bioinformatics information mentioned above. SVM and LASSO were employed to identify hub genes and construct the module associated with HF. The mRNA levels of TAC mice and external datasets (GSE141910 and GSE59867) are utilized for validating the diagnostic model. Additionally, the study explores the relationship between the diagnostic model and immune cell infiltration. Results A total of 395 genes exhibiting differential expression were identified. Functional enrichment analysis revealed that these specific genes primarily participate in biological processes and pathways associated with the constituents of the extracellular matrix (ECM), immune system processes, and inflammatory responses. We identified a diagnostic model consisting of 16 hub genes, and its predictive performance was validated using external data sets and a transverse aortic coarctation (TAC) mouse model. In addition, we observed significant differences in mRNA expression of 7 genes in the TAC mouse model. Interestingly, our study also unveiled a correlation between these model genes and immune cell infiltration. Conclusions We identified sixteen key genes associated with myocardial fibrosis and conduction block, as well as diagnostic models for heart failure. Our findings have significant implications for the intensive management of individuals with potential genetic variants associated with heart failure, especially in the context of advancing cell-targeted therapy for myocardial fibrosis

    Characterization of the Key Aroma Compounds of Three Kinds of Chinese Representative Black Tea and Elucidation of the Perceptual Interactions of Methyl Salicylate and Floral Odorants

    No full text
    Jinjunmei (JJM), Keemun (KM), and Dianhong (DH) are the representative black teas in China, and they have always been favored by consumers. In this study, we aim to obtain the aroma characteristic information of volatile components in black tea samples through headspace solid-phase microextraction (HS-SPME), solvent-assisted flavor evaporation (SAFE), and gas chromatography-mass spectrometry combined with gas chromatography-olfactometry technology. The results showed that 70 compounds including α-methylbenzyl alcohol (isomer of β-phenylethanol) were identified as odorants. Among them, 39 compounds such as linalool and geraniol showed a high degree of aroma contribution. Furthermore, the Feller’s additive model was used to explore the perceptual interactions among the methyl salicylate and the floral compounds (10 groups): five groups of binary compounds showed masking effect after mixing, one group showed additive effect, and four groups showed synergistic effect. The ratio (R) was compared with the aroma index (n) of Steven’s law, which found a high-fitness exponential relationship. The results of this study help to provide additional and new theoretical guidance for improving the aroma quality of black tea

    Health Risk Assessment of Toxic and Harmful Air Pollutants Discharged by a Petrochemical Company in the Beijing-Tianjin-Hebei Region of China

    No full text
    Monitoring of toxic and hazardous air pollutants (HAPs) in a petrochemical company in the Beijing-Tianjin-Hebei region of China to assess the impact of HAPs on the health risks of workers in the petrochemical company. The samples were tested by solid-phase adsorption thermal desorption/gas chromatography-mass spectrometry (HJ734-2014), and the pollutant emission list was obtained. According to the pollutant emission inventory, it can be seen that benzene, toluene and xylene are the main components of toxic and harmful air pollutants emitted by the petrochemical enterprise. The method of combining actual monitoring and CALPUFF model prediction was used to evaluate the impact of the toxic and harmful air pollutants emitted by the enterprise on the health of workers. The risk characterization results show that when benzene is the maximum concentration value predicted by the model, it will pose a carcinogenic risk to the factory workers. Therefore, based on the results of this study, it is recommended not to allow residents to live within the predicted concentration range of the model. The results of this study can enable China’s oil refining industry to better understand the characteristics of pollutant emissions from petrochemical companies in the Beijing-Tianjin-Hebei region. Moreover, the results of this study can be used as a policy basis for improving the health of workers in petrochemical enterprises, and are of great significance to the protection of public health

    Health Risk Assessment of Toxic and Harmful Air Pollutants Discharged by a Petrochemical Company in the Beijing-Tianjin-Hebei Region of China

    No full text
    Monitoring of toxic and hazardous air pollutants (HAPs) in a petrochemical company in the Beijing-Tianjin-Hebei region of China to assess the impact of HAPs on the health risks of workers in the petrochemical company. The samples were tested by solid-phase adsorption thermal desorption/gas chromatography-mass spectrometry (HJ734-2014), and the pollutant emission list was obtained. According to the pollutant emission inventory, it can be seen that benzene, toluene and xylene are the main components of toxic and harmful air pollutants emitted by the petrochemical enterprise. The method of combining actual monitoring and CALPUFF model prediction was used to evaluate the impact of the toxic and harmful air pollutants emitted by the enterprise on the health of workers. The risk characterization results show that when benzene is the maximum concentration value predicted by the model, it will pose a carcinogenic risk to the factory workers. Therefore, based on the results of this study, it is recommended not to allow residents to live within the predicted concentration range of the model. The results of this study can enable China’s oil refining industry to better understand the characteristics of pollutant emissions from petrochemical companies in the Beijing-Tianjin-Hebei region. Moreover, the results of this study can be used as a policy basis for improving the health of workers in petrochemical enterprises, and are of great significance to the protection of public health

    Understanding Temperature Impact on Filament-Related HfO 2

    No full text

    NPC Intracellular Cholesterol Transporter 1 Regulates Ovarian Maturation and Molting in Female <i>Macrobrachium nipponense</i>

    No full text
    NPC intracellular cholesterol transporter 1 (NPC1) plays an important role in sterol metabolism and transport processes and has been studied in many vertebrates and some insects, but rarely in crustaceans. In this study, we characterized NPC1 from Macrobrachium nipponense (Mn-NPC1) and evaluated its functions. Its total cDNA length was 4283 bp, encoding for 1344 amino acids. It contained three conserved domains typical of the NPC family (NPC1_N, SSD, and PTC). In contrast to its role in insects, Mn-NPC1 was mainly expressed in the adult female hepatopancreas, with moderate expression in the ovary and heart. No expression was found in the embryo (stages CS–ZS) and only weak expression in the larval stages from hatching to the post-larval stage (L1–PL15). Mn-NPC1 expression was positively correlated with ovarian maturation. In situ hybridization showed that it was mainly located in the cytoplasmic membrane and nucleus of oocytes. A 25-day RNA interference experiment was employed to illustrate the Mn-NPC1 function in ovary maturation. Experimental knockdown of Mn-NPC1 using dsRNA resulted in a marked reduction in the gonadosomatic index and ecdysone content of M. nipponense females. The experimental group showed a significant delay in ovarian maturation and a reduction in the frequency of molting. These results expand our understanding of NPC1 in crustaceans and of the regulatory mechanism of ovarian maturation in M. nipponense

    Butyrate protects against MRSA pneumonia via regulating gut-lung microbiota and alveolar macrophage M2 polarization

    No full text
    ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) is a well-recognized cause of bacterial pneumonia in general. The gut microbiota and their metabolic byproducts act as important modulators of the gut-lung axis. Our investigation indicates a significant reduction in the abundance of butyrate producer unclassified_f__Lachnospiraceae within the lung and gut microbiota of MRSA-infected mice, as well as a significant decrease in the levels of butyrate in gut and serum. Additionally, supplementary sodium butyrate (NaB) significantly reduces bacteria colonization in the lung, suppresses pro-inflammatory cytokines expression, and enhances lung tissue morphology in MRSA-treated mice. The results of high-throughput 16S rDNA sequencing demonstrate that NaB reshapes the gut and lung microbiota by drastically reducing the abundance of potential pathogenic bacteria in the gut and cell motility-related bacteria in the lung, which are induced by MRSA. Moreover, NaB treatment augments the gut and circulating butyrate levels. Mechanistically, NaB promotes signal transducer and activator of transcription 1 (STAT1) acetylation and inhibits dimer STAT1 phosphorylation by reducing the binding of histone deacetylase 3 to STAT1, thereby altering alveolar macrophage polarization toward the M2 phenotype. Collectively, our findings suggest that NaB exerts a preventative effect against MRSA-induced pneumonia by enhancing the gut-lung microbiota and promoting macrophage polarization toward an anti-inflammatory M2 phenotype. The prophylactic administration of NaB emerges as a promising strategy for combating MRSA pneumonia. IMPORTANCE Pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) continues to carry a high burden in terms of mortality. With the roles of gut microbiota in mediating lung diseases being gradually uncovered, the details of the molecular mechanism of the “gut-lung axis” mediated by beneficial microorganisms and small-molecule metabolites have gradually attracted the attention of researchers. However, further studies are still necessary to determine the efficacy of microbial-based interventions. Our findings indicate that sodium butyrate (NaB) alleviates MRSA-induced pulmonary inflammation by improving gut-lung microbiota and promoting M2 polarization of alveolar macrophages. Therefore, the preventive administration of NaB might be explored as an effective strategy to control MRSA pneumonia

    Exploring the impact of prenatal perfluoroalkyl and polyfluoroalkyl substances exposure on blood pressure in early childhood: A longitudinal analysis

    No full text
    Previous research investigating the correlation between prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and subsequent blood pressure (BP) in offspring has yielded limited and contradictory findings. This study was conducted to investigate the potential relationship between maternal PFAS levels during pregnancy and subsequent BP in early childhood. A total of 129 expectant mothers from the Shanghai Birth Cohort were included in the study. Using high-performance liquid chromatography/tandem mass spectrometry, we measured ten PFAS compounds in maternal plasma throughout the pregnancy. When the children reached the age of 4, we examined their systolic BP (SBP) and diastolic BP (DBP), along with mean arterial pressure (MAP) and pulse pressure (PP). Data interpretation employed multiple linear and logistic regression models, complemented by Bayesian kernel machine regression (BKMR).We found that the majority of PFAS concentrations remained stable during pregnancy. The linear and BKMR models indicated a positive relationship between the PFAS mixture in maternal plasma and offspring's DBP and MAP, with perfluorohexanesulphonic acid (PFHxS) having the most significant influence (PFHxS and DBP [first trimester:β=3.03, 95%CI: (1.01,5.05); second trimester: β=2.35, 95%CI: (0.94,3.75); third trimester: β=2.57, 95%CI:(0.80,4.34)]; MAP [first trimester:β=2.55, 95%CI: (0.64,4.45); second trimester: β=2.28, 95%CI: (0.95,3.61); third trimester: β=2.35, 95%CI:(0.68,4.01)]). Logistic regression highlighted an increased risk of prehypertension and hypertension in offspring with higher maternal PFHxS concentrations during all three trimesters [first trimester: OR=2.53, 95%CI:(1.11,5.79), second trimester: OR=2.05, 95%CI:(1.11,3.78), third trimester: OR=3.08, 95%CI:(1.40,6.79)]. A positive correlation was identified between the half-lives of PFAS and the odds ratio (OR) of prehypertension and hypertension in childhood (β=0.139, P=0.010). In conclusion, this research found maternal plasma PFAS concentrations to be positively associated with BP in offspring, with PFHxS showing the most significant influence. This correlation remained consistent throughout pregnancy, and this effect was proportional to the half-lives of PFAS
    corecore