1,232 research outputs found

    Sustainable CO2 adsorbents prepared by coating chitosan onto mesoporous silicas for large-scale carbon capture technology

    Get PDF
    In this article, we report a new sustainable synthesis procedure for manufacturing chitosan/silica CO2 adsorbents. Chitosan is a naturally abundant material and contains amine functionality, which is essential for selective CO2 adsorptions. It is, therefore, ideally suited for manufacturing CO2 adsorbents on a large scale. By coating chitosan onto high-surface-area mesoporous silica supports, including commercial fumed silica (an economical and accessible reagent) and synthetic SBA-15 and MCF silicas, we have prepared a new family of CO2 adsorbents, which have been fully characterised with nitrogen adsorption isotherms, thermogravimetric analysis/differential scanning calorimetry, TEM, FTIR spectroscopy and Raman spectroscopy. These adsorbents have achieved a significant CO2 adsorption capacity of up to 0.98 mmol g−1 at ambient conditions (P=1 atm and T=25 °C). The materials can also be fully regenerated/recycled on demand at temperatures as low as 75 °C with a >85 % retention of the adsorption capacity after 4 cycles, which makes them promising candidates for advanced CO2 capture, storage and utilisation technology

    Genotyping of Sarawak rice cultivars using microsatellite markers

    Get PDF
    Genetic diversity of 53 Sarawak rice cultivars, originating from Southern Sarawak, was assessed using 54 microsatellite markers. Initial polymorphism detection was conducted using 54 primer pairs distributed on 12 rice chromosomes. Polymorphic markers were chosen from the initial screening results in order to obtain microsatellite marker panels that can differentiate the rice cultivars undertaken in the study. The chosen microsatellite marker panel consisted of RM1, RM240, RM489, RM252, RM413, RM204, RM11, RM404, RM316, RM271, RM206, and RM19, with one representative from each chromosome. A total of 43 alleles were detected with an average of 3.58 alleles per locus. The polymorphism information content (PIC) values obtained from the microsatellite marker panels ranged from 0.306 to 0.730, with an average of 0.622. The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrogram (r = 0.789) revealed 2 major groups with 6 sub-clusters and the wide range of similarity values (0.24-1.0) obtained showed a high degree of diversity among the cultivars. The results suggest microsatellite markers as a useful tool for the estimation of genetic diversity and cultivar differentiation and present invaluable genetic information for future breeding and association mapping efforts

    Development and Validation of a Sensitive Entropy-Based Measure for the Water Maze

    Get PDF
    In the water maze, mice are trained to navigate to an escape platform located below the water's surface, and spatial learning is most commonly evaluated in a probe test in which the platform is removed from the pool. While contemporary tracking software provides precise positional information of mice for the duration of the probe test, existing performance measures (e.g., percent quadrant time, platform crossings) fail to exploit fully the richness of this positional data. Using the concept of entropy (H), here we develop a new measure that considers both how focused the search is and the degree to which searching is centered on the former platform location. To evaluate how H performs compared to existing measures of water maze performance we compiled five separate databases, containing more than 1600 mouse probe tests. Random selection of individual trials from respective databases then allowed us to simulate experiments with varying sample and effect sizes. Using this Monte Carlo-based method, we found that H outperformed existing measures in its ability to detect group differences over a range of sample or effect sizes. Additionally, we validated the new measure using three models of experimentally induced hippocampal dysfunction: (1) complete hippocampal lesions, (2) genetic deletion of αCaMKII, a gene implicated in hippocampal behavioral and synaptic plasticity, and (3) a mouse model of Alzheimer's disease. Together, these data indicate that H offers greater sensitivity than existing measures, most likely because it exploits the richness of the precise positional information of the mouse throughout the probe test

    On the formation and decay of a molecular ultracold plasma

    Full text link
    Double-resonant photoexcitation of nitric oxide in a molecular beam creates a dense ensemble of 50f(2)50f(2) Rydberg states, which evolves to form a plasma of free electrons trapped in the potential well of an NO+^+ spacecharge. The plasma travels at the velocity of the molecular beam, and, on passing through a grounded grid, yields an electron time-of-flight signal that gauges the plasma size and quantity of trapped electrons. This plasma expands at a rate that fits with an electron temperature as low as 5 K, colder that typically observed for atomic ultracold plasmas. The recombination of molecular NO+^+ cations with electrons forms neutral molecules excited by more than twice the energy of the NO chemical bond, and the question arises whether neutral fragmentation plays a role in shaping the redistribution of energy and particle density that directs the short-time evolution from Rydberg gas to plasma. To explore this question, we adapt a coupled rate-equations model established for atomic ultracold plasmas to describe the energy-grained avalanche of electron-Rydberg and electron-ion collisions in our system. Adding channels of Rydberg predissociation and two-body, electron- cation dissociative recombination to the atomic formalism, we investigate the kinetics by which this relaxation distributes particle density and energy over Rydberg states, free electrons and neutral fragments. The results of this investigation suggest some mechanisms by which molecular fragmentation channels can affect the state of the plasma

    Exploration of nanosilver calcium alginate-based multifunctional polymer wafers for wound healing

    Get PDF
    Wound care is an integral part of effective recovery. However, its associated financial burden on national health services globally is significant enough to warrant further research and development in this field. In this study, multifunctional polymer wafers were prepared, which provide antibacterial activity, high cell viability, high swelling capacity and a thermally stable medium which can be used to facilitate the delivery of therapeutic agents. The purpose of this polymer wafer is to facilitate wound healing, by creating nanosilver particles within the polymer matrix itself via a one-pot synthesis method. This study compares the use of two synthetic agents in tandem, detailing the effects on the morphology and size of nanosilver particles. Two synthetic methods with varying parameters were tested, with one method using silver nitrate, calcium chloride and sodium alginate, whilst the other included aloe vera gel as an extra component, which serves as another reductant for nanosilver synthesis. Both methods generated thermally stable alginate matrices with high degrees of swelling capacities (400–900%) coupled with interstitially formed nanosilver of varying shapes and sizes. These matrices exhibited controlled nanosilver release rates which were able to elicit antibacterial activity against MRSA, whilst maintaining an average cell viability value of above 90%. Based on the results of this study, the multifunctional polymer wafers that were created set the standard for future polymeric devices for wound healing. These polymer wafers can then be further modified to suit specific types of wounds, thereby allowing this multifunctional polymer wafer to be applied to different wounding scenarios

    Stationary Localized States Due to a Nonlinear Dimeric Impurity Embedded in a Perfect 1-D Chain

    Full text link
    The formation of Stationary Localized states due to a nonlinear dimeric impurity embedded in a perfect 1-d chain is studied here using the appropriate Discrete Nonlinear Schro¨\ddot{o}dinger Equation. Furthermore, the nonlinearity has the form, χCσ\chi |C|^\sigma where CC is the complex amplitude. A proper ansatz for the Localized state is introduced in the appropriate Hamiltonian of the system to obtain the reduced effective Hamiltonian. The Hamiltonian contains a parameter, β=ϕ1/ϕ0\beta = \phi_1/\phi_0 which is the ratio of stationary amplitudes at impurity sites. Relevant equations for Localized states are obtained from the fixed point of the reduced dynamical system. β|\beta| = 1 is always a permissible solution. We also find solutions for which β1|\beta| \ne 1. Complete phase diagram in the (χ,σ)(\chi, \sigma) plane comprising of both cases is discussed. Several critical lines separating various regions are found. Maximum number of Localized states is found to be six. Furthermore, the phase diagram continuously extrapolates from one region to the other. The importance of our results in relation to solitonic solutions in a fully nonlinear system is discussed.Comment: Seven figures are available on reques

    Physiochemical characteristics of alcohol-acid modified sago and rice starches

    Get PDF
    Native starch has limited applications. It has many disadvantages in industrial applications such as insolubility in cold water, loss of viscosity, and thickening power after cooking. In order to overcome these disadvantages, native starch is modified through physical, chemical or biotechnological techniques. Starch is one of the major components in sago but it had not been well explored to the same degree as maize or potato starch especially in the starch modification processes. In this study, the effects of alcohol-acid treatment on the physiochemical characteristics of sago and rice starches were investigated. Sago and rice starches were hydrolysed for 2 hours at 25 ºC with hydrochloric acid in the presence of methanol, ethanol, and 2-propanol. They were characterized according to their granular structure, solubility, amylose content, gelatinization temperature and functional group. After treatment, presence of internal fissures or cavities was observed. The degradation activity increased corresponding to carbon number of alcohol. Results also showed that the gelatinization onset temperature (To), conclusion temperature (Tc) and peak temperature (Tp) increased with increasing carbon number of the alcohol. The Tp of starches was negatively correlated to the amylose content of starches before and after treatment (r2 = 0.954 for rice and 0.945 for sago). Solubility increased profoundly after treatment and the degree of hydrolysis increased with the increase in carbon number of the alcohol. Rice starch was less soluble than sago starch due to higher amylose content. Rice starch was also found to be less susceptible to alcohol-acid degradation than sago starch, and the unstable properties of native starches improved with 50% increase in solubility at temperature 80 ºC. Results concluded that alcohol-acid treatment of sago and rice starches provide a wide range of modified starches with better solubility, higher gelatinization temperatures but lower in amylose content

    Exploration of dual ionic cross-linked alginate hydrogels via cations of varying valences towards wound healing

    Get PDF
    This study explored the synergistic effects of simultaneously using calcium and gallium cations in the cross-linking of alginate, detailing its effects on the characteristics of alginate compared to its single cation counterparts. The primary goal is to determine if there are any synergistic effects associated with the utilisation of multiple multivalent cations in polymer cross-linking and whether or not it could therefore be used in pharmaceutical applications such as wound healing. Given the fact divalent and trivalent cations have never been utilised together for cross-linking, an explanation for the mode of binding that occurs between the alginate and the cations during the cross-linking process and how it may affect the future applications of the polymer has been investigated. The calcium gallium alginate polymers were able to retain the antibacterial effects of gallium within the confines of the polymer matrix, possessing superior rheological properties, 6 times that of pure calcium and pure gallium, coupled with an improved swelling capacity that is 4 times higher than that of gallium alginate
    corecore