972 research outputs found
Issues for computer modelling of room acoustics in non-concert hall settings
The basic principle of common room acoustics computer models is the energy-based geometrical room acoustics theory. The energy-based calculation relies on the averaging effect provided when there are many reflections from many different directions, which is well suited for large concert halls at medium and high frequencies. In recent years computer modelling has become an established tool in architectural acoustics design thanks to the advance in computing power and improved understanding of the modelling accuracy. However concert hall is only one of many types of built environments that require good acoustic design. Increasingly computer models are being sought for non-concert hall applications, such as in small rooms at low frequencies, flat rooms in workplace surroundings, and long enclosures such as underground stations. In these built environments the design issues are substantially difference from that of concert halls and in most cases the common room acoustics models will needed to be modified or totally re-formulated in order to deal with these new issues. This paper looks at some examples of these issues. In workplace environments we look at the issues of directional propagation and volume scattering by furniture and equipment instead of the surface scattering that is common assumed in concert hall models. In small rooms we look at the requirement of using wave models, such as boundary element models, or introducing phase information into geometrical room acoustics models to determine wave behaviours. Of particular interest is the ability of the wave models to provide phase information that is important not only for room modes but for the construction of impulse response for auralisation. Some simulated results using different modelling techniques will be presented to illustrate the problems and potential solutions
Mesoscale observations of Joule heating near an auroral arc and ion-neutral collision frequency in the polar cap E region
We report on the first mesoscale combined ionospheric and thermospheric observations, partly in the vicinity of an auroral arc, from Svalbard in the polar cap on 2 February 2010. The EISCAT Svalbard radar employed a novel scanning mode in order to obtain F and E region ion flows over an annular region centered on the radar. Simultaneously, a colocated Scanning Doppler Imager observed the E region neutral winds and temperatures around 110 km altitude using the 557.7 nm auroral optical emission. Combining the ion and neutral data permits the E region Joule heating to be estimated with an azimuthal spatial resolution of âź64 km at a radius of âź163 km from the radar. The spatial distribution of Joule heating shows significant mesoscale variation. The ion-neutral collision frequency is measured in the E region by combining all the data over the entire field of view with only weak aurora present. The estimated ion-neutral collision frequency at âź113 km altitude is in good agreement with the MSIS atmospheric model
Preliminary Evaluation of Lectins as Fluorescent Probes of Seed Structure and Composition
Several commercially available fluoresceinisothiocyanate and rhodamine isothiocyanateconjugated plant lectins have been applied to cereal and oilseed tissues to permit identification and localization of specific structures and carbohydrates by fluorescence microscopy . Ulex europeaus Agglutinin I (UEAl) and Ricinis communis Agglutinin I (RCA I) showed specificity for the amyloids in rapeseed cotyledonary cell walls . Wheat Germ Agglutinin (WGA) bound to rapeseed coat mucilage, as well as fungal hyphae in infected wheat . Lens culinaris Agglutinin (LCA) bound only to starch in cereal sections, and at higher magnifications of isolated starch granules , the annular structure was clearly visible
Stationary Localized States Due to a Nonlinear Dimeric Impurity Embedded in a Perfect 1-D Chain
The formation of Stationary Localized states due to a nonlinear dimeric
impurity embedded in a perfect 1-d chain is studied here using the appropriate
Discrete Nonlinear Schrdinger Equation. Furthermore, the nonlinearity
has the form, where is the complex amplitude. A proper
ansatz for the Localized state is introduced in the appropriate Hamiltonian of
the system to obtain the reduced effective Hamiltonian. The Hamiltonian
contains a parameter, which is the ratio of stationary
amplitudes at impurity sites. Relevant equations for Localized states are
obtained from the fixed point of the reduced dynamical system. = 1 is
always a permissible solution. We also find solutions for which . Complete phase diagram in the plane comprising of both
cases is discussed. Several critical lines separating various regions are
found. Maximum number of Localized states is found to be six. Furthermore, the
phase diagram continuously extrapolates from one region to the other. The
importance of our results in relation to solitonic solutions in a fully
nonlinear system is discussed.Comment: Seven figures are available on reques
On the formation and decay of a molecular ultracold plasma
Double-resonant photoexcitation of nitric oxide in a molecular beam creates a
dense ensemble of Rydberg states, which evolves to form a plasma of
free electrons trapped in the potential well of an NO spacecharge. The
plasma travels at the velocity of the molecular beam, and, on passing through a
grounded grid, yields an electron time-of-flight signal that gauges the plasma
size and quantity of trapped electrons. This plasma expands at a rate that fits
with an electron temperature as low as 5 K, colder that typically observed for
atomic ultracold plasmas. The recombination of molecular NO cations with
electrons forms neutral molecules excited by more than twice the energy of the
NO chemical bond, and the question arises whether neutral fragmentation plays a
role in shaping the redistribution of energy and particle density that directs
the short-time evolution from Rydberg gas to plasma. To explore this question,
we adapt a coupled rate-equations model established for atomic ultracold
plasmas to describe the energy-grained avalanche of electron-Rydberg and
electron-ion collisions in our system. Adding channels of Rydberg
predissociation and two-body, electron- cation dissociative recombination to
the atomic formalism, we investigate the kinetics by which this relaxation
distributes particle density and energy over Rydberg states, free electrons and
neutral fragments. The results of this investigation suggest some mechanisms by
which molecular fragmentation channels can affect the state of the plasma
An Introduction to Hyperbolic Barycentric Coordinates and their Applications
Barycentric coordinates are commonly used in Euclidean geometry. The
adaptation of barycentric coordinates for use in hyperbolic geometry gives rise
to hyperbolic barycentric coordinates, known as gyrobarycentric coordinates.
The aim of this article is to present the road from Einstein's velocity
addition law of relativistically admissible velocities to hyperbolic
barycentric coordinates along with applications.Comment: 66 pages, 3 figure
- âŚ