9 research outputs found

    Current channel evolution in ideal Z pinch for general velocity profiles

    Full text link
    Recent diagnostic advances in gas-puff Z pinches at the Weizmann Institute for the first time allow the reconstruction of the current flow as a function of time and radius. These experiments show an unexpected radially-outward motion of the current channel, as the plasma moves radially-inward [C. Stollberg, Ph.D thesis, Weizmann Institute, 2019]. In this paper, a mechanism that could explain this current evolution is described. We examine the impact of advection on the distribution of current in a cylindrically symmetric plasma. In the case of metric compression, with |v_r| proportional to r, the current enclosed between each plasma fluid element and the axis is conserved, and so the current profile maintains its shape. We show that for more general velocity profiles, this simple behavior quickly breaks down, allowing for non-conservation of current in a compressing conductor, rapid redistribution of the current density, and even for the formation of reverse currents. In particular, a specific inward radial velocity profile is shown to result in radially-outward motion of the current channel, recovering the surprising current evolution discovered at the Weizmann Institute.Comment: 12 pages, 6 figure

    On the Stark Effect of the O I 777-nm Triplet in Plasma and Laser Fields

    No full text
    The O I 777-nm triplet transition is often used for plasma density diagnostics. It is also employed in nonlinear optics setups for producing quasi-comb structures when pumped by a near-resonant laser field. Here, we apply computer simulations to situations of the radiating atom subjected to the plasma microfields, laser fields, and both perturbations together. Our results, in particular, resolve a controversy related to the spectral line anomalously broadened in some laser-produced plasmas. The importance of using time-dependent density matrix is discussed

    K

    No full text

    Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems.

    No full text
    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution
    corecore