92 research outputs found

    Numerical Study of Random Corrosion Characteristics of Metal Based On the Cellular Automata Method

    Get PDF
    In the production process of coal chemical companies, the corrosion of metal equipment and the resulting shortening of its service life can cause safety hazards. Simulation modeling of pit emergence and development during corrosion evolution provides a new approach to corrosion research. By analyzing the effect of different parameters on causing corrosion to occur, it is possible to reflect the influence of complex physico-chemical systems. In this paper, the simulation of a meta-cellular automaton model of pit growth under diffusion and the introduction of a passivation probability to correct the chemical reaction rate are developed; The effect of reaction passivation probability, chemical reaction rate and diffusion coefficient on the degree of corrosion was also analyzed by means of quantitative analysis. The results show that for metal corrosion loss processes, the degree of corrosion damage decreases with increasing probability of reactive passivation and increases with increasing chemical reaction rate, increasing electrolyte concentration and increasing time step. The CA model was applied to simulate the growth and change of pitting corrosion of metal materials with their corrosion protection layer under damaged conditions. The corrosion model can simulate the corrosion morphology change characteristics similar to the real metal to the corrosion pit evolution simulation related research has certain scientific, validity, reference

    Numerical Study of Random Corrosion Characteristics of Metal Based On the Cellular Automata Method

    Get PDF
    In the production process of coal chemical companies, the corrosion of metal equipment and the resulting shortening of its service life can cause safety hazards. Simulation modeling of pit emergence and development during corrosion evolution provides a new approach to corrosion research. By analyzing the effect of different parameters on causing corrosion to occur, it is possible to reflect the influence of complex physico-chemical systems. In this paper, the simulation of a meta-cellular automaton model of pit growth under diffusion and the introduction of a passivation probability to correct the chemical reaction rate are developed; The effect of reaction passivation probability, chemical reaction rate and diffusion coefficient on the degree of corrosion was also analyzed by means of quantitative analysis. The results show that for metal corrosion loss processes, the degree of corrosion damage decreases with increasing probability of reactive passivation and increases with increasing chemical reaction rate, increasing electrolyte concentration and increasing time step. The CA model was applied to simulate the growth and change of pitting corrosion of metal materials with their corrosion protection layer under damaged conditions. The corrosion model can simulate the corrosion morphology change characteristics similar to the real metal to the corrosion pit evolution simulation related research has certain scientific, validity, reference

    Local Climate Zone in Xi’an City: A Novel Classification Approach Employing Spatial Indicators and Supervised Classification

    Get PDF
    The Local Climate Zone (LCZ), as a foundational element of urban climate zone classification proposed by Oke and Stewart, categorizes urban surface types based on 10 influential parameters affecting the urban heat island effect, such as building density, surface reflectivity, sky view factor, and surface roughness length. This method divides cities into 17 different Local Climate Zones (LCZs) to standardize climate observations and promote global climate research exchange, offering valuable insights for heat island studies. In this study, we enhance the existing local climate zones spatial classification approach by focusing on Xi’an city’s urban layout and architectural features. By using urban spatial indicators and employing a supervised classification approach and a spatial clustering method with land parcels as statistical units, we investigate typical urban areas and classify Xi’an’s land parcels into 17 or 15 distinct local climate zones. Subsequently, through the evaluation of two distinct classification methods, the most suitable urban microclimate zoning method for Xi’an city was selected. This optimization of the local climate zoning representation introduces a spatial classification method tailored to urban climate planning and control, utilizing urban spatial indicators and remote sensing data. The resulting urban climate zoning map not only supports sample selection for urban heat environment parameter observation but also aids urban planners in identifying spatial distribution patterns for climate zoning

    Interaction-free, single-pixel quantum imaging with undetected photons

    Full text link
    A typical imaging scenario requires three basic ingredients: 1. a light source that emits light, which in turn interacts and scatters off the object of interest; 2. detection of the light being scattered from the object and 3. a detector with spatial resolution. These indispensable ingredients in typical imaging scenarios may limit their applicability in the imaging of biological or other sensitive specimens due to unavailable photon-starved detection capabilities and inevitable damage induced by interaction. Here, we propose and experimentally realize a quantum imaging protocol that alleviates all three requirements. By embedding a single-photon Michelson interferometer into a nonlinear interferometer based on induced coherence and harnessing single-pixel imaging technique, we demonstrate interaction-free, single-pixel quantum imaging of a structured object with undetected photons. Thereby, we push the capability of quantum imaging to the extreme point in which no interaction is required between object and photons and the detection requirement is greatly reduced. Our work paves the path for applications in characterizing delicate samples with single-pixel imaging at silicon-detectable wavelengths

    A rare case of schizophrenia coexistence with antiphospholipid syndrome, β-thalassemia, and monoclonal gammopathy of undetermined significance

    Get PDF
    A patient with schizophrenia who was treated with chlorpromazine developed lupus anticoagulant (LA) and antiphospholipid syndrome (APS). On protein electrophoresis, a monoclonal immunoglobulin A peak was seen in this patient, defining a condition of monoclonal gammopathy of undetermined significance. Additionally, β-thalassemia was diagnosed with the CD41-42 genotype. This condition is extremely rare, particularly in patients with schizophrenia and APS. We present a case of a patient with schizophrenia and secondary APS who had a positive LA, a significantly prolonged activated partial thromboplastin time, endogenous coagulation factor deficiency and inhibitor, no bleeding, and an unexpected finding of β-thalassemia and monoclonal IgA. Following that, a literature review on the disorders was presented

    Study on cutting performance of SiCp/Al composite using textured YG8 carbide tool

    Get PDF
    Precision machining of SiCp/Al composites is a challenge due to the existence of reinforcement phase in this material. This work focuses on the study of the textured tools’ cutting performance on SiCp/Al composite, as well as the comparison with non-textured tools. The results show that the micro-pit textured tool can reduce the cutting force by 5–13% and cutting length by 9–39%. Compared with non-textured tools, the cutting stability of the micro-pit textured tools is better. It is found that the surface roughness is the smallest (0.4 μm) when the texture spacing is 100 μm, and the residual stress can be minimized to around 15 MPa in the case of texture spacing 80 μm. In addition, the SiC particles with size of around 2–12 μm in the SiCp/Al composite may play a supporting role between the texture and the chips, which results in three-body friction, thereby reducing tool wear, sticking, and secondary cutting phenomenon. At the same time, some SiC particles enter into the micro-pit texture, so that the number of residual particles on the surface is reduced and the friction between the tool and the surface then decreases, which improves the surface roughness, and reduces the surface residual stress.TU Berlin, Open-Access-Mittel - 202

    YbtT is a low-specificity type II thioesterase that maintains production of the metallophore yersiniabactin in pathogenic enterobacteria

    Get PDF
    Clinical isolates of Yersinia, Klebsiella, and Escherichia coli frequently secrete the small molecule metallophore yersiniabactin (Ybt), which passivates and scavenges transition metals during human infections. YbtT is encoded within the Ybt biosynthetic operon and is critical for full Ybt production in bacteria. However, its biosynthetic function has been unclear because it is not essential for Ybt production by the in vitro reconstituted nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) pathway. Here, we report the structural and biochemical characterization of YbtT. YbtT structures at 1.4-1.9 Ã… resolution possess a serine hydrolase catalytic triad and an associated substrate chamber with features similar to those previously reported for low-specificity type II thioesterases (TEIIs). We found that YbtT interacts with the two major Ybt biosynthetic proteins, HMWP1 (high-molecular-weight protein 1) and HMWP2 (high-molecular-weight protein 2), and hydrolyzes a variety of aromatic and acyl groups from their phosphopantetheinylated carrier protein domains. In vivo YbtT titration in uropathogenic E. coli revealed a distinct optimum for Ybt production consistent with a tradeoff between clearing both stalled inhibitory intermediates and productive Ybt precursors from HMWP1 and HMWP2. These results are consistent with a model in which YbtT maintains cellular Ybt biosynthesis by removing nonproductive, inhibitory thioesters that form aberrantly at multiple sites on HMWP1 and HMWP2

    Research on the micro-hole texture forming of PCD tool surface

    Get PDF
    Based on the research on the forming mechanism of textured PCD tool surface, the nanosecond laser is used to study the influence of laser machining parameters on the size and topography of PCD tool surface micro texture. The micro-hole texture is prepared on the surface of the PCD tool, and a single factor experiment is designed to study the influence of laser power, pulse frequency and defocusing amount on the micro-hole texture. The results show that, the micro-hole diameter increases gradually with the laser power, but decreases with the pulse frequency; the overall micro-hole diameter tends to increase with the defocus. The pulse frequency has the greatest impact on the micro-hole diameter, followed by the defocus amount, and finally the laser power. The influence of different parameters on the surface recast layer is also completely different. As a result, the surface and laser power are the main factors that affect the surface recast layer

    High-performance and Scalable Software-based NVMe Virtualization Mechanism with I/O Queues Passthrough

    Full text link
    NVMe(Non-Volatile Memory Express) is an industry standard for solid-state drives (SSDs) that has been widely adopted in data centers. NVMe virtualization is crucial in cloud computing as it allows for virtualized NVMe devices to be used by virtual machines (VMs), thereby improving the utilization of storage resources. However, traditional software-based solutions have flexibility benefits but often come at the cost of performance degradation or high CPU overhead. On the other hand, hardware-assisted solutions offer high performance and low CPU usage, but their adoption is often limited by the need for special hardware support or the requirement for new hardware development. In this paper, we propose LightIOV, a novel software-based NVMe virtualization mechanism that achieves high performance and scalability without consuming valuable CPU resources and without requiring special hardware support. LightIOV can support thousands of VMs on each server. The key idea behind LightIOV is NVMe hardware I/O queues passthrough, which enables VMs to directly access I/O queues of NVMe devices, thus eliminating virtualization overhead and providing near-native performance. Results from our experiments show that LightIOV can provide comparable performance to VFIO, with an IOPS of 97.6%-100.2% of VFIO. Furthermore, in high-density VMs environments, LightIOV achieves 31.4% lower latency than SPDK-Vhost when running 200 VMs, and an improvement of 27.1% in OPS performance in real-world applications
    • …
    corecore