68 research outputs found

    Mapping EEG Signals to Visual Stimuli: A Deep Learning Approach to Match vs. Mismatch Classification

    Full text link
    Existing approaches to modeling associations between visual stimuli and brain responses are facing difficulties in handling between-subject variance and model generalization. Inspired by the recent progress in modeling speech-brain response, we propose in this work a ``match-vs-mismatch'' deep learning model to classify whether a video clip induces excitatory responses in recorded EEG signals and learn associations between the visual content and corresponding neural recordings. Using an exclusive experimental dataset, we demonstrate that the proposed model is able to achieve the highest accuracy on unseen subjects as compared to other baseline models. Furthermore, we analyze the inter-subject noise using a subject-level silhouette score in the embedding space and show that the developed model is able to mitigate inter-subject noise and significantly reduce the silhouette score. Moreover, we examine the Grad-CAM activation score and show that the brain regions associated with language processing contribute most to the model predictions, followed by regions associated with visual processing. These results have the potential to facilitate the development of neural recording-based video reconstruction and its related applications

    Le regole del gioco: Primo incontro con l'ingegneria strategica

    Get PDF
    Cu particles decorated carbon composite microspheres (CCMs) with a unique sesame ball structure have been prepared by combining the mass-producible spray drying technique with calcinations. The conventional cuprammonium cellulose complex solution obtained by dissolving cellulose in a cuprammonia solution has been applied as raw materials for the preparation of Cu­(NH<sub>3</sub>)<sub>4</sub><sup>2+</sup>/cellulose complex microspheres via a spray drying process. The resulted Cu­(NH<sub>3</sub>)<sub>4</sub><sup>2+</sup>/cellulose complex microspheres are then transformed into the Cu particles homogeneously decorated porous carbon spheres <i>in situ</i> by calcinations at 450 or 550 °C. The coordination effect between the Cu­(NH<sub>3</sub>)<sub>4</sub><sup>2+</sup> species and the hydroxyl groups of the cellulose macromolecules has been exploited for directing the dispersion of the Cu particles in the resultant composite CCMs. The antimicrobial effects of the CCMs are evaluated by determining the minimum growth inhibitory concentrations using Staphylococcus aureus and Escherichia coli as representatives, respectively. The CCMs show high efficiency catalytic properties to the conversion of 4-nitrophenol to 4-aminophenol using NaBH<sub>4</sub> as a reductant in a mild condition. The recyclability and stability of the CCM catalysts have also been studied

    Spray drying assisted assembly of ZnO nanocrystals using cellulose as sacrificial template and studies on their photoluminescent and photocatalytic properties

    Get PDF
    The conventional zincoxen cellulose solution, which was obtained by dissolving cellulose with the zincoxen solvent (tri(ethylenediamine) zinc hydroxide solution, Zn(EDA)), has been used as raw materials for the preparation of zincoxen/cellulose complex microspheres via a spray drying technique. The obtained zincoxen/cellulose microspheres are turned into assemblies (or clusters) of ZnO nanocrystals by calcining the complex microspheres at 500 or 700\ua0°C. For the preparation, zincoxen plays both the role as solvent for cellulose and precursor for the ZnO nanocrystals. While, the cellulose acts as assembly agent during the spray drying step and sacrificial templates in the calcinations process. The content of cellulose in the zincoxen cellulose aqueous solution and the calcination temperature show significant impacts on the morphology, porosity, optical properties and photocatalytic activity of the resulted ZnO nanocrystal assemblies. The structures, morphology and porosity have been investigated based on XRD, SEM, TEM and N adsorption-desorption technique. The lattice parameters have been fitted by the Rietveld refinement and the strains in the crystals have been studied. Under ultraviolet light irradiation, all the assemblies of ZnO nanocrystals exhibit high photocatalytic activity for methyl orange degradation in aqueous solution and also satisfied reusability and stability of morphology and composition

    The clinical effectiveness of staple line reinforcement with different matrix used in surgery

    Get PDF
    Staplers are widely used in clinics; however, complications such as bleeding and leakage remain a challenge for surgeons. To tackle this issue, buttress materials are recommended to reinforce the staple line. This Review provides a systematic summary of the characteristics and applications of the buttress materials. First, the physical and chemical properties of synthetic polymer materials and extracellular matrix used for the buttress materials are introduced, as well as their pros and cons in clinical applications. Second, we review the clinical effects of reinforcement mesh in pneumonectomy, sleeve gastrectomy, pancreatectomy, and colorectal resection. Based on the analysis of numerous research data, we believe that buttress materials play a crucial role in increasing staple line strength and reducing the probability of complications, such as bleeding and leakage. However, considering the requirements of bioactivity, degradability, and biosafety, non-crosslinked small intestinal submucosa (SIS) matrix material is the preferred candidate. It has high research and application value, but further studies are required to confirm this. The aim of this Review is to provide comprehensive guidance on the selection of materials for staple line reinforcement

    Porous carbon directed growth of carbon modified MnO2 porous spheres for pseudocapacitor applications

    Get PDF
    Carbon modified MnO2 (CMMO) spheres have been fabricated through a facile low temperature (60 degrees C) hydrothermal method using mesoporous carbon spheres as reductive agent and sacrificial template and KMnO4 as manganese source. CMMO spheres with novel nanostructures such as flower-like and sea urchin-like are obtained by controlling the reaction time. The roles of mesoporous carbon in directing the growth of the CMMO spheres and controlling their morphologies have been investigated. The CMMO spheres are characterized by XRD, XPS, SEM, TEM, Raman spectra, TGA and N-2 adsorption-desorption technique and electrochemical measurement. The resulted samples possess unique morphologies and regular pores, and their properties changed as reaction time proceed. The peseudocapacitive behaviors of the as-prepared samples are tested in two-electrode supercapacitors using 2 mol L-1 KOH aqueous solutions as electrolyte. A high gravimetric capacitance of 344 F g(-1) at 1 A g(-1) and the capacity retaining of 75% after 5000 cycles are achieved on the electrode prepared with one of the CMMO samples. The other CMMO samples also possess excellent electrochemical performance in comparison with the pristine mesoporous carbon (p-MC). Such superior electrochemical performance makes the porous CMMO spheres to be promising materials in the application of pseudocapacitors. (C) 2017 Elsevier B.V. All rights reserved

    Simultaneous arthroscopic cystectomy and unicompartmental knee arthroplasty for the management of partial knee osteoarthritis with a popliteal cyst: A case report

    Get PDF
    IntroductionPopliteal cysts are secondary to degenerative changes in the knee joint. After total knee arthroplasty (TKA), 56.7% of patients with popliteal cysts at 4.9 years follow-up remained symptomatic in the popliteal area. However, the result of simultaneous arthroscopic cystectomy and unicompartmental knee arthroplasty (UKA) was uncertain.Case presentationA 57-year-old man was admitted to our hospital with severe pain and swelling in his left knee and the popliteal area. He was diagnosed with severe medial unicompartmental knee osteoarthritis (KOA) with a symptomatic popliteal cyst. Subsequently, arthroscopic cystectomy and unicompartmental knee arthroplasty (UKA) were performed simultaneously. A month after the operation, he returned to his normal life. There was no progression in the lateral compartment of the left knee and no recurrence of the popliteal cyst at the 1-year follow-up.ConclusionFor KOA patients with a popliteal cyst seeking UKA, simultaneous arthroscopic cystectomy and UKA are feasible with great success if managed appropriately

    A novel IgE epitope-specific antibodies-based sandwich ELISA for sensitive measurement of immunoreactivity changes of peanut allergen Ara h 2 in processed foods

    Get PDF
    BackgroundPeanut is an important source of dietary protein for human beings, but it is also recognized as one of the eight major food allergens. Binding of IgE antibodies to specific epitopes in peanut allergens plays important roles in initiating peanut-allergic reactions, and Ara h 2 is widely considered as the most potent peanut allergen and the best predictor of peanut allergy. Therefore, Ara h 2 IgE epitopes can serve as useful biomarkers for prediction of IgE-binding variations of Ara h 2 and peanut in foods. This study aimed to develop and validate an IgE epitope-specific antibodies (IgE-EsAbs)-based sandwich ELISA (sELISA) for detection of Ara h 2 and measurement of Ara h 2 IgE-immunoreactivity changes in foods.MethodsDEAE-Sepharose Fast Flow anion-exchange chromatography combining with SDS-PAGE gel extraction were applied to purify Ara h 2 from raw peanut. Hybridoma and epitope vaccine techniques were employed to generate a monoclonal antibody against a major IgE epitope of Ara h 2 and a polyclonal antibody against 12 IgE epitopes of Ara h 2, respectively. ELISA was carried out to evaluate the target binding and specificity of the generated IgE-EsAbs. Subsequently, IgE-EsAbs-based sELISA was developed to detect Ara h 2 and its allergenic residues in food samples. The IgE-binding capacity of Ara h 2 and peanut in foods was determined by competitive ELISA. The dose-effect relationship between the Ara h 2 IgE epitope content and Ara h 2 (or peanut) IgE-binding ability was further established to validate the reliability of the developed sELISA in measuring IgE-binding variations of Ara h 2 and peanut in foods.ResultsThe obtained Ara h 2 had a purity of 94.44%. Antibody characterization revealed that the IgE-EsAbs recognized the target IgE epitope(s) of Ara h 2 and exhibited high specificity. Accordingly, an IgE-EsAbs-based sELISA using these antibodies was able to detect Ara h 2 and its allergenic residues in food samples, with high sensitivity (a limit of detection of 0.98 ng/mL), accuracy (a mean bias of 0.88%), precision (relative standard deviation &lt; 16.50%), specificity, and recovery (an average recovery of 98.28%). Moreover, the developed sELISA could predict IgE-binding variations of Ara h 2 and peanut in foods, as verified by using sera IgE derived from peanut-allergic individuals.ConclusionThis novel immunoassay could be a user-friendly method to monitor low level of Ara h 2 and to preliminary predict in vitro potential allergenicity of Ara h 2 and peanut in processed foods

    Macleaya cordata isoquinoline alkaloids attenuate Escherichia coli lipopolysaccharide-induced intestinal epithelium injury in broiler chickens by co-regulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways

    Get PDF
    This study sought to explore the effects and potential mechanisms of dietary supplementation with isoquinoline alkaloids (IA) from Macleaya cordata to alleviate lipopolysaccharide (LPS)-induced intestinal epithelium injury in broilers. A total of 486 1-day-old broilers were assigned at random to a control (CON) group, LPS group, and LPS+IA group in a 21-d study. The CON and LPS groups received a basal diet, while the LPS+IA group received a basal diet supplemented with 0.6 mg/kg IA. At 17, 19, and 21 days of age, the LPS and LPS+BP groups were injected intraperitoneally with LPS, and the CON group was intraperitoneally injected equivalent amount of saline solution. The results manifested that LPS injection caused intestinal inflammation and lipid peroxidation, disrupted intestinal barrier and function, and increased the abundance of harmful microorganisms. However, dietary IA supplementation alleviated LPS-induced adverse changes in intestinal morphology, apoptosis, mucosal barrier integrity, cecum microorganisms, and homeostasis disorder by decreasing inflammatory cytokines and enhancing antioxidant-related genes expressions; inhibited LPS-induced increases in TLR4 and NF-κB expressions and decreases in Nrf2 and GPX1 genes expressions. Our findings indicated that Macleaya cordata IA addition attenuated LPS-induced intestinal epithelium injury and disorder of intestinal homeostasis by enhancing the anti-inflammatory and antioxidant capacity of broiler chickens possibly via co-regulating TLR4/MyD88/NF-κB and Nrf2 signaling pathways

    Preparation of highly-ordered TiOâ‚‚ nanotube arrays and their applications in Dye-sensitized solar cells

    No full text
    Titanium oxide is an important semiconductor, which is widely applied for solar cells. In this research, titanium oxide nanotube arrays were synthesized by anodization of Ti foil in the electrolyte composed of ethylene glycol containing 2 vol % H2O and 0.3 wt % NH4F. The voltages of 40V-50V were employed for the anodizing process. Pore diameters and lengths of the TiO2 nanotubes were evaluated by field emission scanning electron microscope (FESEM). The obtained highly-ordered titanium nanotube arrays were exploited to fabricate photoelectrode for the Dye-sensitized solar cells (DSSCS). The TiO2 nanotubes based DSSCS exhibited an excellent performance with a high short circuit current and open circuit voltage as well as a good power conversion efficiency. Those can be attributed to the high surface area and one dimensional structure of TiO2 nanotubes, which could hold a large amount of dyes to absorb light and help electron percolation process to hinder the recombination during the electrons diffusion in the electrolyte

    A New Slack Lyapunov Functional for Dynamical System with Time Delay

    No full text
    The traditional method of constructing a Lyapunov functional for dynamical systems with time delay is usually dependent on positive definite matrices in the quadratic form. In this paper, a new Lyapunov functional is proposed and the corresponding proof is given. It do not require that all matrices in the quadratic form of Lyapunov functionals are positive definite, while the quadratic form is still positive definite, which makes the estimate more relaxed due to special construction of matrices. It is a general form and can be used in the performance analysis of a variety of dynamical systems. Moreover, a lemma concerning the quadratic function is applied to deal with the quadratic term of time-varying delay. Lastly, in the case of classical dynamical systems with time delay, the verification results are given to illustrate the usefulness of the new slack Lyapunov functional
    • …
    corecore