604 research outputs found

    Circumventing embryonic lethality with Lcmt1 deficiency: generation of hypomorphic Lcmt1 mice with reduced protein phosphatase 2A methyltransferase expression and defects in insulin signaling.

    Get PDF
    Protein phosphatase 2A (PP2A), the major serine/threonine phosphatase in eukaryotic cells, is a heterotrimeric protein composed of structural, catalytic, and targeting subunits. PP2A assembly is governed by a variety of mechanisms, one of which is carboxyl-terminal methylation of the catalytic subunit by the leucine carboxyl methyltransferase LCMT1. PP2A is nearly stoichiometrically methylated in the cytosol, and although some PP2A targeting subunits bind independently of methylation, this modification is required for the binding of others. To examine the role of this methylation reaction in mammalian tissues, we generated a mouse harboring a gene-trap cassette within intron 1 of Lcmt1. Due to splicing around the insertion, Lcmt1 transcript and LCMT1 protein levels were reduced but not eliminated. LCMT1 activity and methylation of PP2A were reduced in a coordinate fashion, suggesting that LCMT1 is the only PP2A methyltransferase. These mice exhibited an insulin-resistance phenotype, indicating a role for this methyltransferase in signaling in insulin-sensitive tissues. Tissues from these animals will be vital for the in vivo identification of methylation-sensitive substrates of PP2A and how they respond to differing physiological conditions

    Social capital and cost of debt: Evidence from Chinese CEO network centrality

    Get PDF
    Using a unique dataset comprising 6313 firm-year observations for Chinese listed firms between 2008 and 2017, we investigate the impact of CEO social capital on cost of debt. Our results show that CEO social capital is negatively related to cost of debt, and the impact of CEO social capital in environments with a low degree of marketization or social trust is more pronounced than in environments with a high degree of marketization or social trust. Moreover, our results reveal that two potential mechanisms, discretionary accruals and information disclosure quality, mediate the impact of CEO social capital on cost of debt

    Palmoplantar keratoderma along with neuromuscular and metabolic phenotypes in Slurp1-deficient mice.

    Get PDF
    Mutations in SLURP1 cause mal de Meleda, a rare palmoplantar keratoderma (PPK). SLURP1 is a secreted protein that is expressed highly in keratinocytes but has also been identified elsewhere (e.g., spinal cord neurons). Here, we examined Slurp1-deficient mice (Slurp1(-/-)) created by replacing exon 2 with β-gal and neo cassettes. Slurp1(-/-) mice developed severe PPK characterized by increased keratinocyte proliferation, an accumulation of lipid droplets in the stratum corneum, and a water barrier defect. In addition, Slurp1(-/-) mice exhibited reduced adiposity, protection from obesity on a high-fat diet, low plasma lipid levels, and a neuromuscular abnormality (hind-limb clasping). Initially, it was unclear whether the metabolic and neuromuscular phenotypes were due to Slurp1 deficiency, because we found that the targeted Slurp1 mutation reduced the expression of several neighboring genes (e.g., Slurp2, Lypd2). We therefore created a new line of knockout mice (Slurp1X(-/-) mice) with a simple nonsense mutation in exon 2. The Slurp1X mutation did not reduce the expression of adjacent genes, but Slurp1X(-/-) mice exhibited all of the phenotypes observed in the original line of knockout mice. Thus, Slurp1 deficiency in mice elicits metabolic and neuromuscular abnormalities in addition to PPK

    Efficient CRISPR/Cas9-based genome editing in carrot cells

    Get PDF
    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas9) is a powerful genome editing tool that has been widely adopted in model organisms recently, but has not been used in carrot—a model species for in vitro culture studies and an important health-promoting crop grown worldwide. In this study, for the first time, we report application of the CRISPR/Cas9 system for efficient targeted mutagenesis of the carrot genome. Multiplexing CRISPR/Cas9 vectors expressing two single-guide RNA (gRNAs) targeting the carrot flavanone-3-hydroxylase (F3H) gene were tested for blockage of the anthocyanin biosynthesis in a model purple-colored callus using Agrobacterium-mediated genetic transformation. This approach allowed fast and visual comparison of three codon-optimized Cas9 genes and revealed that the most efficient one in generating F3H mutants was the Arabidopsis codon-optimized AteCas9 gene with up to 90% efficiency. Knockout of F3H gene resulted in the discoloration of calli, validating the functional role of this gene in the anthocyanin biosynthesis in carrot as well as providing a visual marker for screening successfully edited events. Most resulting mutations were small Indels, but long chromosome fragment deletions of 116–119 nt were also generated with simultaneous cleavage mediated by two gRNAs. The results demonstrate successful site-directed mutagenesis in carrot with CRISPR/Cas9 and the usefulness of a model callus culture to validate genome editing systems. Given that the carrot genome has been sequenced recently, our timely study sheds light on the promising application of genome editing tools for boosting basic and translational research in this important vegetable crop

    Immunostaining for allatotropin and allatostatin-A and -C in the mosquitoes Aedes aegypti and Anopheles albimanus

    Get PDF
    Confocal laser-scanning microscopy was used to carry out a comparative study of the immunostaining for three families of neuropeptides, viz., allatostatin-A (AS-A), allatostatin-C (AS-C) and allatotropin (AT), in adult female mosquitoes of Aedes aegypti and Anopheles albimanus. The specific patterns of immunostaining for each of the three peptides were similar in both species. The antisera raised against AT, AS-A, and AS-C revealed intense immunoreactivity in the cells of each protocerebral lobe of the brain and stained cells in each of the ventral ganglia and neuronal projections innervating various thoracic and abdominal tissues. Only the AS-A antiserum labeled immunoreactive endocrine cells in the midgut. The distribution of the peptides supports the concept that they play multiple regulatory roles in both species
    corecore