5,618 research outputs found

    SSB-1 of the yeast Saccharomyces cerevisiae is a nucleolar-specific, silver-binding protein that is associated with the snR10 and snR11 small nuclear RNAs

    Get PDF
    SSB-1, the yeast single-strand RNA-binding protein, is demonstrated to be a yeast nucleolar-specific, silver-binding protein. In double-label immunofluorescence microscopy experiments antibodies to two other nucleolar proteins, RNA Pol I 190-kD and fibrillarin, were used to reveal the site of rRNA transcription; i.e., the fibrillar region of the nucleolus. SSB-1 colocalized with fibrillarin in a double-label immunofluorescence mapping experiment to the yeast nucleolus. SSB-1 is located, though, over a wider region of the nucleolus than the transcription site marker. Immunoprecipitations of yeast cell extracts with the SSB-1 antibody reveal that in 150 mM NaCl SSB-1 is bound to two small nuclear RNAs (snRNAs). These yeast snRNAs are snR10 and snR11, with snR10 being predominant. Since snR10 has been implicated in pre-rRNA processing, the association of SSB-1 and snR10 into a nucleolar snRNP particle indicates SSB-1 involvement in rRNA processing as well. Also, another yeast protein, SSB-36-kD, isolated by single- strand DNA chromatography, is shown to bind silver under the conditions used for nucleolar-specific staining. It is, most likely, another yeast nucleolar protein

    Deformation of Quantum Dots in the Coulomb Blockade Regime

    Full text link
    We extend the theory of Coulomb blockade oscillations to quantum dots which are deformed by the confining potential. We show that shape deformations can generate sequences of conductance resonances which carry the same internal wavefunction. This fact may cause strong correlations of neighboring conductance peaks. We demonstrate the relevance of our results for the interpretation of recent experiments on semiconductor quantum dots.Comment: 4 pages, Revtex, 4 postscript figure

    Josephson Current between Triplet and Singlet Superconductors

    Full text link
    The Josephson effect between triplet and singlet superconductors is studied. Josephson current can flow between triplet and singlet superconductors due to the spin-orbit coupling in the spin-triplet superconductor but it is finite only when triplet superconductor has Lz=−Sz=±1L_z=-S_z=\pm 1, where LzL_z and SzS_z are the perpendicular components of orbital angular momentum and spin angular momentum of the triplet Cooper pairs, respectively. The recently observed temperature and orientational dependence of the critical current through a Josephson junction between UPt3_3 and Nb is investigated by considering a non-unitary triplet state.Comment: 4 pages, no figure

    Odd Parity and Line Nodes in Heavy Fermion Superconductors

    Full text link
    Group theory arguments have demonstrated that a general odd parity order parameter cannot have line nodes in the presence of spin-orbit coupling. In this paper, it is shown that these arguments do not hold on the kz=Ï€/ck_z = \pi/c zone face of a hexagonal close packed lattice. In particular, three of the six odd parity representations vanish identically on this face. This has potential relevance to the heavy fermion superconductor UPt3UPt_3.Comment: 5 pages, revte

    Kinetically driven glassy transition in an exactly solvable toy model with reversible mode coupling mechanism and trivial statics

    Full text link
    We propose a toy model with reversible mode coupling mechanism and with trivial Hamiltonian (and hence trivial statics). The model can be analyzed exactly without relying upon uncontrolled approximation such as the factorization approximation employed in the current MCT. We show that the model exhibits a kinetically driven transition from an ergodic phase to nonergodic phase. The nonergodic state is the nonequilibrium stationary solution of the Fokker-Planck equation for the distribution function of the modelComment: 10 pages, 1 figure, contribution to the Proceedings of the Barcelona Workshop 'Glassy Behavior of Kinetically Constrained Models'. To appear in J. Phys. Condens. Matte

    Theory of the Transition at 0.2 K in Ni-doped Bi2Sr2CaCu2O8

    Full text link
    A theory is put forward that the electronic phase transition at 0.2 K in Ni-doped Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} is result of the formation of a spin density wave in the system of Ni impurities. The driving force for the transition is the exchange interaction between the impurity spins and the spins of the conduction electrons. This creates a small gap at two of the four nodes of the superconducting gap. The effect is to reduce the thermal conductivity by a factor of two, as observed.Comment: 10 pages and 1 figur

    Tracking system analytic calibration activities for the Mariner Mars 1971 mission

    Get PDF
    Data covering various planning aspects of Mariner Mars 1971 mission are summarized. Data cover calibrating procedures for tracking stations, radio signal propagation in the troposphere, effects of charged particles on radio transmission, orbit calculation, and data smoothing

    Absence of non-linear Meissner effect in YBa2Cu3O6.95

    Full text link
    We present measurements the field and temperature dependence of the penetration depth (lambda) in high purity, untwinned single crystals of YBa2Cu3O6.95 in all three crystallographic directions. The temperature dependence of lambda is linear down to low temperatures, showing that our crystals are extremely clean. Both the magnitude and temperature dependence of the field dependent correction to lambda however, are considerably different from that predicted from the theory of the non-linear Meissner effect for a d-wave superconductor (Yip-Sauls theory). Our results suggest that the Yip-Sauls effect is either absent or is unobservably small in the Meissner state of YBa2Cu3O6.95.Comment: 4 pages, 4 figures (Latex file + Postscipt figures

    Radiation-induced root surface caries restored with glass-ionomer cement placed in conventional and ART cavity preparations: Results at two years

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association (8th Jan 2008). An external link to the publisher’s copy is included.Background: There are no published studies comparing the clinical performances of more-viscous glass-ionomer cement (GIC) restorations when placed using conventional and atraumatic restorative treatment (ART) cavity preparation methods to restore root surface caries. Methods: One dentist used encapsulated Fuji IX GP and Ketac-Molar to restore 72 conventional and 74 ART cavity preparations for 15 patients who had received cervicofacial radiation therapy. Two assessors evaluated the restorations at six, 12, and 24 months for retention, marginal defects and surface wear, and recurrent caries. Results: After two years, the cumulative restoration successes were 65.2 per cent for the conventional and 66.2 per cent for the ART cavity preparations, without statistical or clinical significance (P>0.50). Restoration dislodgement accounted for 82.8 per cent and marginal defects for 17.2 per cent of all failures. There were no instances of unsatisfactory restoration wear or recurrent caries observed. Teeth with three or more restored cervical surfaces accounted for 79.3 per cent of all failures (P<0.0001). Conclusions: For root surface caries restored with GIC, the use of hand instruments only with the ART method was an equally effective alternative to conventional rotary instrumentation for cavity preparation. Larger restorations had higher failures, usually from dislodgement.JY Hu, XC Chen, YQ Li, RJ Smales and KH Yi
    • …
    corecore