27 research outputs found

    Association of immune cell traits with Parkinson’s disease: a Mendelian randomization study

    Get PDF
    BackgroundImmunity and neuroinflammation play crucial roles in the pathogenesis of Parkinson’s disease (PD). Nonetheless, prior investigations into the correlation between immune inflammation and PD have produced varying results. Identifying specific immune cell phenotypes that are truly associated with PD is challenging, and the causal relationship between immune cells and PD remains elusive.MethodsThis study conducted a comprehensive two-sample Mendelian randomization (MR) analysis, employing five distinct analytical approaches, to clarify the causal connection between immune cell characteristics and the risk of PD. Utilizing GWAS data, we investigated the causal relationship between 731 immune cell traits and PD. These immune cell phenotypes encompass absolute cell (AC) counts, median fluorescence intensity (MFI), and relative cell (RC) counts for B cells, cDCs, mature stage T cells, monocytes, myeloid cells, TBNK (T cells, B cells, and natural killer cells), and Tregs, as well as the logistic parameter (MP) for cDCs and TBNK.ResultsThe inverse variance weighted (IVW) analysis indicated that Myeloid DCs (p = 0.004), HVEM expression on CD45RA− CD4+ T cells (p = 0.007), CD62L− CD86+ Myeloid DCs (p = 0.015), and HLA DR expression on monocytes (p = 0.019) were associated with a reduced risk of PD. CD14+ CD16+ monocytes (p = 0.005), HLA DR+ NK cells within CD3− lymphocytes (p = 0.023), and CD28 expression on activated & secreting Tregs (p = 0.032) were associated with an increased risk of PD.ConclusionThis study establishes a causal link between immune cell phenotype and the pathogenesis of PD, identifying several specific immune cell characteristics associated with PD. This could inspire researchers to delve into the pathogenesis of PD at the cellular subtype level, and aid in the identification of potential pharmacological protein targets for PD

    Small breast epithelial mucin as a useful prognostic marker for breast cancer patients

    No full text
    This study aimed to evaluate the clinical utility of small breast epithelial mucin (SBEM) as a prognostic biomarker in an independent patient cohort. The paraffin-embedded tissues and clinicopathological data of 105 patients with breast cancer were collected, and the expression of SBEM in breast cancer samples was detected by immunohistochemical staining. The correlations between clinicopathological variables and the expression of SBEM were analyzed, and its significance as a prognostic indicator for breast cancer patients was determined. Immunohistochemical staining revealed that SBEM was expressed mostly in the cytomembrane and cytoplasm, with markedly increased SBEM expression (≥4 points on staining intensity) observed in 34 of 105 breast cancer tissues (32.4%). Elevated expression of SBEM was found to be significantly associated with larger tumor size (P = 0.002), more frequent lymph node metastasis (P = 0.029), advanced tumor node metastasis stage (P = 0.005), reduced expression of the progesterone receptor (PR) (P = 0.002), and a higher Ki-67 index (P = 0.006). Survival analysis indicated that patients with elevated SBEM expression had worse overall survival (OS) (5-year OS rate: 50.5 vs 93.9% for high and low SBEM expression, respectively, P < 0.001) and disease-free survival (DFS) (5-year DFS rate: 52.8 vs 81.7% for high and low SBEM expression, respectively, P = 0.001) rates than those with low expression of SBEM. Univariate and multivariate Cox analyses demonstrated that elevated expression of SBEM (hazard ratio [HR] = 1.994, 95% confidence interval [CI]: 1.008–3.945, P = 0.047), tumor size (HR = 2.318, 95% CI: 1.071–5.017, P = 0.033), and PR status (HR = 0.195, 95% CI: 0.055–0.694, P = 0.012) were independent predictors of OS in breast cancer patients. Elevated expression of SBEM was associated with both aggressive tumor characteristics and poor survival, indicating its potential as a useful prognostic biomarker for breast cancer patients

    Determination of Enantiomeric Excess by Optofluidic Microlaser near Exceptional Point

    No full text
    Abstract Enantiomeric excess (ee) is an essential indicator of chiral drug purification in the pharmaceutical industry. However, to date the ee determination of unknown concentration enantiomers generally involves two separate techniques for chirality and concentration measurement. Here, a whispering‐gallery mode (WGM) based optofluidic microlaser near exceptional point to achieve the ee determination under unknown concentration with a single technique is proposed. Exceptional point induces the unidirectional WGM lasing, providing the optofluidic microlaser with the novel capability to measure chirality by polarization, in addition to wavelength‐based concentration detection. The dual‐parameters detection of optofluidic microlaser empowers it to achieve ee determination of various unknown enantiomers without additional concentration measurements, a feat that is challenging to accomplish with other methods. Featuring the sensitivity enhancement and miniature structure of the WGM sensors, the obtained chiroptical response of the present approach is ≈30‐fold higher than that of the conventional optical rotation‐based polarimeter, and the reagent consumption is reduced by three orders of magnitude

    Data_Sheet_1_Investigating the shared genetic architecture between frailty and insomnia.docx

    No full text
    BackgroundThe epidemiological association between frailty and insomnia is well established, yet the presence of a common genetic etiology is still uncertain. Further exploration is needed to ascertain the causal relationship between frailty and insomnia.MethodsUtilizing data obtained from genome-wide association studies (GWAS) summaries, we utilized the linkage disequilibrium score regression (LDSC) to determine the genetic correlation existing between frailty and insomnia. The determination of causality was achieved through the application of two-sample Mendelian randomization. We investigated the enrichment of single nucleotide polymorphism (SNP) at various tissue types utilizing stratified LD score regression (S-LDSC) and multimarker analysis of genome annotation (MAGMA). Common risk SNPs were identified using Multi-Trait Analysis of GWAS (MTAG) and Cross-Phenotype Association (CPASSOC). We further investigated the expression profiles of risk genes in tissues using Summary-data-based Mendelian randomization(SMR) based on pooled data, to explore potential functional genes.ResultsOur findings indicated a significant genetic correlation between frailty and insomnia, highlighting SNPs sharing risk (rs34290943, rs10865954), with a pronounced correlation in the localized genomic region 3p21.31. Partitioned genetic analysis revealed 24 functional elements significantly associated with both frailty and insomnia. Furthermore, mendelian randomization revealed a causal connection between frailty and insomnia. The genetic correlation between frailty and insomnia showed enrichment in 11 brain regions (S-LDSC) and 9 brain regions (MAGMA), where four functional genes (RMB6, MST1R, RF123, and FAM212A) were identified.ConclusionThis study suggests the existence of a genetic correlation and common risk genes between frailty and insomnia, contributing to a deeper comprehension of their pathogenesis and assists in identifying potential therapeutic targets.</p

    Novel insights into the METTL3-METTL14 complex in musculoskeletal diseases

    No full text
    Abstract N6-methyladenosine (m6A) modification, catalyzed by methyltransferase complexes (MTCs), plays many roles in multifaceted biological activities. As the most important subunit of MTCs, the METTL3-METTL14 complex is reported to be the initial factor that catalyzes the methylation of adenosines. Recently, accumulating evidence has indicated that the METTL3-METTL14 complex plays a key role in musculoskeletal diseases in an m6A-dependent or -independent manner. Although the functions of m6A modifications in a variety of musculoskeletal diseases have been widely recognized, the critical role of the METTL3-METTL14 complex in certain musculoskeletal disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis and osteosarcoma, has not been systematically revealed. In the current review, the structure, mechanisms and functions of the METTL3-METTL14 complex and the mechanisms and functions of its downstream pathways in the aforementioned musculoskeletal diseases are categorized and summarized

    Preliminary Assessment of Intramuscular Depot of Lipid-Based Decoquinate Formulation for Long-Term Chemoprophylaxis of Malaria

    No full text
    Sustained-release formulations of decoquinate were evaluated for the long-term prophylaxis of malaria. In the initial experiment, mice were protected from liver-stage Plasmodium infection by intramuscular administration of a lipids-based formulation at a dose of decoquinate 200 mg/kg. The mice that were inoculated with Plasmodium berghei sporozoites 34 days after the administration of a one-time drug dose were continuously monitored for 60 days and shown to be free of Plasmodium parasites. The optimized formulation for the sustained release of decoquinate was prepared by hot melt extrusion, constructed by lipids including cholesterol and mono or diglycerides, and had a drug load of 20 to 40% and particle size of 30 to 50 μm. Decoquinate of the lipids-based formulation was slowly released in vitro at a constant rate for the duration of two months, and was examined and continuously exposed at a therapeutic level in the blood for as long as 4 to 6 months. Further evaluation showed that the lipids-based formulation at doses of decoquinate 100 to 150 mg/kg could protect mice from Plasmodium infection for a period of 120 days. It is the first time that cholesterol has been used for a controlled drug delivery system of decoquinate. The results may provide useful information, not only for preparing a formulation of long-acting decoquinate but also in general for developing a controlled drug release system. The one-time administration of pharmaceutical agents in such a slow-release system may serve patients with no concerns about compliance
    corecore