186 research outputs found

    Inferring causal relations from multivariate time series : a fast method for large-scale gene expression data

    Get PDF
    Various multivariate time series analysis techniques have been developed with the aim of inferring causal relations between time series. Previously, these techniques have proved their effectiveness on economic and neurophysiological data, which normally consist of hundreds of samples. However, in their applications to gene regulatory inference, the small sample size of gene expression time series poses an obstacle. In this paper, we describe some of the most commonly used multivariate inference techniques and show the potential challenge related to gene expression analysis. In response, we propose a directed partial correlation (DPC) algorithm as an efficient and effective solution to causal/regulatory relations inference on small sample gene expression data. Comparative evaluations on the existing techniques and the proposed method are presented. To draw reliable conclusions, a comprehensive benchmarking on data sets of various setups is essential. Three experiments are designed to assess these methods in a coherent manner. Detailed analysis of experimental results not only reveals good accuracy of the proposed DPC method in large-scale prediction, but also gives much insight into all methods under evaluation

    Statistical inference from large-scale genomic data

    Get PDF
    This thesis explores the potential of statistical inference methodologies in their applications in functional genomics. In essence, it summarises algorithmic findings in this field, providing step-by-step analytical methodologies for deciphering biological knowledge from large-scale genomic data, mainly microarray gene expression time series. This thesis covers a range of topics in the investigation of complex multivariate genomic data. One focus involves using clustering as a method of inference and another is cluster validation to extract meaningful biological information from the data. Information gained from the application of these various techniques can then be used conjointly in the elucidation of gene regulatory networks, the ultimate goal of this type of analysis. First, a new tight clustering method for gene expression data is proposed to obtain tighter and potentially more informative gene clusters. Next, to fully utilise biological knowledge in clustering validation, a validity index is defined based on one of the most important ontologies within the Bioinformatics community, Gene Ontology. The method bridges a gap in current literature, in the sense that it takes into account not only the variations of Gene Ontology categories in biological specificities and their significance to the gene clusters, but also the complex structure of the Gene Ontology. Finally, Bayesian probability is applied to making inference from heterogeneous genomic data, integrated with previous efforts in this thesis, for the aim of large-scale gene network inference. The proposed system comes with a stochastic process to achieve robustness to noise, yet remains efficient enough for large-scale analysis. Ultimately, the solutions presented in this thesis serve as building blocks of an intelligent system for interpreting large-scale genomic data and understanding the functional organisation of the genome

    Partial mixture model for tight clustering of gene expression time-course

    Get PDF
    Background: Tight clustering arose recently from a desire to obtain tighter and potentially more informative clusters in gene expression studies. Scattered genes with relatively loose correlations should be excluded from the clusters. However, in the literature there is little work dedicated to this area of research. On the other hand, there has been extensive use of maximum likelihood techniques for model parameter estimation. By contrast, the minimum distance estimator has been largely ignored. Results: In this paper we show the inherent robustness of the minimum distance estimator that makes it a powerful tool for parameter estimation in model-based time-course clustering. To apply minimum distance estimation, a partial mixture model that can naturally incorporate replicate information and allow scattered genes is formulated. We provide experimental results of simulated data fitting, where the minimum distance estimator demonstrates superior performance to the maximum likelihood estimator. Both biological and statistical validations are conducted on a simulated dataset and two real gene expression datasets. Our proposed partial regression clustering algorithm scores top in Gene Ontology driven evaluation, in comparison with four other popular clustering algorithms. Conclusion: For the first time partial mixture model is successfully extended to time-course data analysis. The robustness of our partial regression clustering algorithm proves the suitability of the ombination of both partial mixture model and minimum distance estimator in this field. We show that tight clustering not only is capable to generate more profound understanding of the dataset under study well in accordance to established biological knowledge, but also presents interesting new hypotheses during interpretation of clustering results. In particular, we provide biological evidences that scattered genes can be relevant and are interesting subjects for study, in contrast to prevailing opinion

    A sparse regulatory network of copy-number driven expression reveals putative breast cancer oncogenes

    Full text link
    The influence of DNA cis-regulatory elements on a gene's expression has been intensively studied. However, little is known about expressions driven by trans-acting DNA hotspots. DNA hotspots harboring copy number aberrations are recognized to be important in cancer as they influence multiple genes on a global scale. The challenge in detecting trans-effects is mainly due to the computational difficulty in detecting weak and sparse trans-acting signals amidst co-occuring passenger events. We propose an integrative approach to learn a sparse interaction network of DNA copy-number regions with their downstream targets in a breast cancer dataset. Information from this network helps distinguish copy-number driven from copy-number independent expression changes on a global scale. Our result further delineates cis- and trans-effects in a breast cancer dataset, for which important oncogenes such as ESR1 and ERBB2 appear to be highly copy-number dependent. Further, our model is shown to be efficient and in terms of goodness of fit no worse than other state-of the art predictors and network reconstruction models using both simulated and real data.Comment: Accepted at IEEE International Conference on Bioinformatics & Biomedicine (BIBM 2010

    Predicting chemoinsensitivity in breast cancer with ’omics/digital pathology data fusion

    Get PDF
    Predicting response to treatment and disease-specific deaths are key tasks in cancer research yet there is a lack of methodologies to achieve these. Large-scale ’omics and digital pathology technologies have led to the need for effective statistical methods for data fusion to extract the most useful patterns from these diverse data types. We present FusionGP, a method for combining heterogeneous data types designed specifically for predicting outcome of treatment and disease. FusionGP is a Gaussian process model that includes a generalization of feature selection for biomarker discovery, allowing for simultaneous, sparse feature selection across multiple data types. Importantly, it can accommodate highly nonlinear structure in the data, and automatically infers the optimal contribution from each input data type. FusionGP compares favourably to several popular classification methods, including the Random Forest classifier, a stepwise logistic regression model and the Support Vector Machine on single data types. By combining gene expression, copy number alteration and digital pathology image data in 119 estrogen receptor (ER)-negative and 345 ER-positive breast tumours, we aim to predict two important clinical outcomes: death and chemoinsensitivity. While gene expression data give the best predictive performance in the majority of cases, the digital pathology data are much better for predicting death in ER cases. Thus, FusionGP is a new tool for selecting informative features from heterogeneous data types and predicting treatment response and prognosis

    Statistical inference from large-scale genomic data

    Get PDF
    This thesis explores the potential of statistical inference methodologies in their applications in functional genomics. In essence, it summarises algorithmic findings in this field, providing step-by-step analytical methodologies for deciphering biological knowledge from large-scale genomic data, mainly microarray gene expression time series. This thesis covers a range of topics in the investigation of complex multivariate genomic data. One focus involves using clustering as a method of inference and another is cluster validation to extract meaningful biological information from the data. Information gained from the application of these various techniques can then be used conjointly in the elucidation of gene regulatory networks, the ultimate goal of this type of analysis. First, a new tight clustering method for gene expression data is proposed to obtain tighter and potentially more informative gene clusters. Next, to fully utilise biological knowledge in clustering validation, a validity index is defined based on one of the most important ontologies within the Bioinformatics community, Gene Ontology. The method bridges a gap in current literature, in the sense that it takes into account not only the variations of Gene Ontology categories in biological specificities and their significance to the gene clusters, but also the complex structure of the Gene Ontology. Finally, Bayesian probability is applied to making inference from heterogeneous genomic data, integrated with previous efforts in this thesis, for the aim of large-scale gene network inference. The proposed system comes with a stochastic process to achieve robustness to noise, yet remains efficient enough for large-scale analysis. Ultimately, the solutions presented in this thesis serve as building blocks of an intelligent system for interpreting large-scale genomic data and understanding the functional organisation of the genome.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The expression profile analysis of NKX2-5 knock-out embryonic mice to explore the pathogenesis of congenital heart disease

    Get PDF
    AbstractBackgroundMutation of NKX2-5 could lead to the development of congenital heart disease (CHD) which is a common inherited disease. This study aimed to investigate the pathogenesis of CHD in NKX2-5 knock-out embryonic mice.MethodsThe expression profile in the NKX2-5 knock-out embryonic mice (GSE528) was downloaded from Gene Expression Omnibus. The heart tissues from the null/heterozygous embryonic day 12.5 mice were compared with wild-type mice to identify differentially expressed genes (DEGs), and then DEGs corresponding to the transcriptional factors were filtered out based on the information in the TRANSFAC database. In addition, a transcriptional regulatory network was constructed according to transcription factor binding site information from the University of California Santa Cruz database. A pathway interaction network was constructed by latent pathways identification analysis.ResultsThe 42 DEGs corresponding to transcriptional factors from the null and heterozygous embryos were identified. The transcriptional regulatory networks included five down-regulated DEGs (SP1, SRY, JUND, STAT6, and GATA6), and six up-regulated DEGs [POU2F1, NFY (NFYA/NFYB/NFYC), USF2 and MAX]. Latent pathways analysis demonstrated that ribosome, glycolysis/gluconeogenesis, and dilated cardiomyopathy pathways significantly interacted.ConclusionThe identified DEGs and latent pathways could provide new comprehensive view for understanding the pathogenesis of CHD

    Symmetric Dense Inception Network for Simultaneous Cell Detection and Classification in Multiplex Immunohistochemistry Images

    Get PDF
    Deep-learning based automatic analysis of the multiplex immunohistochemistry (mIHC) enables distinct cell populations to be localized on a large scale, providing insights into disease biology and therapeutic targets. However, standard deep-learning pipelines performed cell detection and classification as two-stage tasks, which is computationally inefficient and faces challenges to incorporate neighbouring tissue context for determining the cell identity. To overcome these limitations and to obtain a more accurate mapping of cell phenotypes, we presented a symmetric dense inception neural network for detecting and classifying cells in mIHC slides simultaneously. The model was applied with a novel stop-gradient strategy and a loss function accounted for class imbalance. When evaluated on an ovarian cancer dataset containing 6 cell types, the model achieved an F1 score of 0.835 in cell detection, and a weighted F1-score of 0.867 in cell classification, which outperformed separate models trained on individual tasks by 1.9% and 3.8% respectively. Taken together, the proposed method boosts the learning efficiency and prediction accuracy of cell detection and classification by simultaneously learning from both tasks

    Superpixel-based conditional random fields (SuperCRF) : incorporating global and local context for enhanced deep learning in melanoma histopathology

    Get PDF
    Computational pathology-based cell classification algorithms are revolutionizing the study of the tumor microenvironment and can provide novel predictive/prognosis biomarkers crucial for the delivery of precision oncology. Current algorithms used on hematoxylin and eosin slides are based on individual cell nuclei morphology with limited local context features. Here, we propose a novel multi-resolution hierarchical framework (SuperCRF) inspired by the way pathologists perceive regional tissue architecture to improve cell classification and demonstrate its clinical applications. We develop SuperCRF by training a state-of-art deep learning spatially constrained- convolution neural network (SC-CNN) to detect and classify cells from 105 high-resolution (20×) H&E-stained slides of The Cancer Genome Atlas melanoma dataset and subsequently, a conditional random field (CRF) by combining cellular neighborhood with tumor regional classification from lower resolution images (5, 1.25×) given by a superpixel-based machine learning framework. SuperCRF led to an 11.85% overall improvement in the accuracy of the state-of-art deep learning SC-CNN cell classifier. Consistent with a stroma-mediated immune suppressive microenvironment, SuperCRF demonstrated that (i) a high ratio of lymphocytes to all lymphocytes within the stromal compartment (p = 0.026) and (ii) a high ratio of stromal cells to all cells (p < 0.0001 compared to p = 0.039 for SC-CNN only) are associated with poor survival in patients with melanoma. SuperCRF improves cell classification by introducing global and local context-based information and can be implemented in combination with any single-cell classifier. SuperCRF provides valuable tools to study the tumor microenvironment and identify predictors of survival and response to therapy
    corecore