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Abstract

This thesis explores the potential of statistical infeeemethodologies in
their applications in functional genomics. In essenceymmarises algo-
rithmic findings in this field, providing step-by-step anadgl methodolo-
gies for deciphering biological knowledge from large-sog¢énomic data,
mainly microarray gene expression time series.

This thesis covers a range of topics in the investigationoofiglex mul-

tivariate genomic data. One focus involves using clusteas a method
of inference and another is cluster validation to extracamegful biolog-

ical information from the data. Information gained from tyeplication

of these various techniques can then be used conjointlyeirlicidation
of gene regulatory networks, the ultimate goal of this typeamalysis.

First, a new tight clustering method for gene expressioa daproposed
to obtain tighter and potentially more informative genestdus. Next, to
fully utilise biological knowledge in clustering validat, a validity in-

dex is defined based on one of the most important ontologigsnthe

Bioinformatics community, Gene Ontology. The method beisig gap in
current literature, in the sense that it takes into accoanonly the varia-
tions of Gene Ontology categories in biological specigstand their sig-
nificance to the gene clusters, but also the complex streictiithe Gene
Ontology. Finally, Bayesian probability is applied to madgiinference
from heterogeneous genomic data, integrated with prewafiags in this

thesis, for the aim of large-scale gene network inferendee droposed
system comes with a stochastic process to achieve robastnesise, yet
remains €icient enough for large-scale analysis.

Ultimately, the solutions presented in this thesis servieudlsling blocks
of an intelligent system for interpreting large-scale geitwdata and un-
derstanding the functional organisation of the genome.
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Chapter 1

Introduction

The genomics age has entered a new era to provide a grandepaftuhe whole
genomes. Advances in microarray, deoxyribonucleic acidAPsequencing tech-
niques, and other high-throughput biotechnologies hageadit great success to the
life sciences. With the support of these high-throughpatduzihnologies, significant
breakthroughs in life science have been achieved, sucheaadvancement of cell
reprogramming 139 and the development of low cost sequencing technigqdggs |
Increasingly, high-throughput technologies are chantjiegoiological landscape with
their dficiency, cost ffective nature and genome-wide coverage.

Therefore, some of the most significant advances in genoregesarch in recent
years have been achieved with the availability of these-thgbughput technologies
to produce large-scale genomic data. The advent of thesengeescale data sources
has transformed conventional biological research inta-gaiented investigations. In
these investigations, a key research direction is ffeztve interpretation andiecient
utilisation of these information-rich data. For instanioégrence from these data at the

molecular level has been revolutionary in medicidg]] both because of the highly



informative nature and the comprehensive genome-widerageeof the data.

Consequently, statistical inference from large-scaleogea data has emerged as a
new discipline employing innovative data mining methodgmrted by high-throughput
biological experimental technologies. The central goabi€mploy computational
techniques for extracting knowledge from the large-scalgognic data, and translate
gained knowledge into system-based applications suctsaash classification.

Statistical inference methods have been intensively agpb various research ar-
eas such as multimedia processid®( and computational neuroscience]. Al-
though statistics has been the support for biological dadédyais for many years, bi-
ological data has changed over time not only in size, but @l@vin structure. In
particular, genomic data from high-throughput bioteclgas have their unique, di-
verse features. New statistical challenges arise from e¢heirements of analysing
these high-throughput genomic data, and, ultimatelyyviaegifundamental biological
information. In this sense, innovative, objective affig¢etive computational methods
are urgently needed.

In recognition of this, this thesis addresses existing lgrol in statistical inference
from large-scale genomic data resulting from high-thrqughiechnologies, which, in
essence, originate from the scale and the intrinsic cheniatits of the data. In re-
sponse, it introduces new computational statistical aggres built upon up-to-date
biological understanding. The new algorithms have beerldped taking into ac-
count the unique characteristics of genomic data, and hese Wmalidated by means of
statistical benchmarking with both synthetic and realtd/diata. Above all, the thesis
represents the methodology of designing novel statisticadels in accordance with
biological prior knowledge about the subjects under irigesion.

The main theme of this thesis is the application of staasticethodologies to ge-



1.1 Genome Architecture and Functions

nomics research, bridging multiple disciplines such aspaer science, molecular
biology and statistics. The thesis highlights an expositiat advanced statistical and
computational techniques, combined with highly problgreesfic modeling #&orts,
can be eventually developed into elegant yet realistic tdations for genomics re-
search. On the other hand, the immense complexity and sttcitya nature of the
data faced by genomics research not only challenge the tiélitieoretical and algo-
rithmic statistical learning, but also foster new develemts within. Further, insights
gained from this process could lead to new perspectivesgarithmic findings for
a broad range of fields that involve statistical learninghsas signal processing and
neuroscience.

This chapter is organised as follows. To understand theaegal in genomics,
this chapter first gives a brief description about the genambitecture and function-
ality. It then discusses the current state as well as thagitie and weaknesses of the
representative data types presented, with an emphasismthbB@enomic data are re-
lated to certain biological process and how they contribmtbe analysis. Specifically,
this chapter gives a description about the acquisitiongseof gene expression data
from microarray technology, the main source of data andlysehis thesis, to help
understand the data particular characteristics. Latekeliassues related to genomic
data analysis are laid out, as both derived from the liteeadund initial experimental
data analysis. Following this, the objectives of this these presented. The chapter

concludes with a thesis outline and a description of chaquenections.
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Figure 1.1: Key processes in the central pathway (adapbeal [B]).

1.1 Genome Architecture and Functions

Functional genomics is, fundamentally, an area of resededitated to understanding
the structure and functional organisation of the geno#@k [The central dogma states
that it is the genetic information encoded in the genes, wiiicough a molecular
decoding process, facilitates the functioning of cells iiviag organism R7]. Deci-
phering the gene control circuitry encoded in the genestarfdnctional organisation
is a fundamental problem in genomics research, and is a fufdbss thesis.

The expression of genetic information encoded in the gec@ss in two stages, as
depicted in Figurd..L Genes are segments of DNA, which is a long double-stranded
anti-parallel molecule in which single complementary stigreversibly bind to each
other to form a double stranded helix. From the left of Figlie genes are regulated
by their own gene regulatory proteins, namely transcnpfectors, and transcribed

into messenger ribonucleic acid (MRNA) . This is the traipsion stage, which refers


./ThesisFigs/functionalgenomics2.eps

1.1 Genome Architecture and Functions

to the process of making a single-stranded mRNA molecuteussingle coding DNA
strand as a template, it is also the initial step of gene egmwa. mRNA are then trans-
lated into proteins which are responsible for carrying aedny all cell functions. In
turn, some of the proteins can again act as transcriptidorf&evhich act to (coordi-
nately) regulate transcription itself. These transooiptiactors regulate the next gene
expression for the gene themselves are encoded bpratid transcription of other
genes. The whole procedure is governed by complex bioclanmteractions that
regulate gene expression and interaction. Therefore,etpélatory mechanisms are
vital in directing genetic information flow and are the keyatglobal understanding of
genome functions.

Study of the above genetic information flow from gene to prote the central
pathway helps reveal functional regulatory componentiéngenome, discover their
connections with each other, and ultimately lead to mappuigthe whole picture
of the regulatory mechanism. The fundamental problem is twwnfer collective
gene regulatory functions and clarifying the roles of genesellular processes. By
providing computational methodologies applicable to tightthroughput data that
monitor these processes, this thesis aims to shed lighteosttily of gene regulatory
mechanisms. The investigation focus is on transcriptianaVities that are central to

the regulatory mechanisms in the genome.

1.1.1 Key Processes and Related Data

Recent advances in high-throughput technologies havdemh#ie entire information
flow procedure in the central pathway, as described in Setti to be captured on a

genome-wide scale. To map out how the data is monitorifigréint cellular processes
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Figure 1.2: Genomic data is providing large-scale desongtof nearly all compo-
nents and interactions within the cell (adapted frat).

at different levels of the regulatory mechanism, three processesxplicitly listed

below, followed by related types of data that can providevaht information about

these processes.

e Transcription factor binding Proteins that are transcription factors bind to

genegsegments of DNA, cause changes in their expression andtdéeitran-

scription.

e Gene expressiorGenes are transcribed into mMRNAs, and the resulting mRNA

abundance can indicate the active genes and their expndeseis.

e Protein-protein interaction mMRNAs are translated into proteins which perform

cell functions. Some proteins that are transcription factmn again initialise

gene expression.

Figure 1.2 depicts these three processes tracing the genetic inflomigdw. As in-

dicated in the adjacent boxes, the related data are claksif@®two categories, inter-
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1.1 Genome Architecture and Functions

action data or component data. The interaction data spkaky between molecular
components while components data deal with the molecutgteot of the cell.

From the top, transcriptions factors (proteins) regulate enitiate transcription
of MRNA from DNA. The processes that are responsible for gimey and modify-
ing these cellular components are generally dictated by oubdr interactions, in this
case, by protein-DNA interactions. These interactionshEdescribed with the tran-
scription factor binding data, which directly capture giatDNA interactions in the
first place. Then during transcription, genes are expreasgddesult in mMRNAs. The
presence and the relative abundance of resulting mRNAdrigts can be measured
by the component data of the microarray gene expression ddtar these mRNA
are translated into proteins, protein-protein interadiare involved in translational
processes as well as enzymatic reactions. Protein-prioteiraction data can indicate
how the end products interact and dictate cellular funstiofhis figure shows how
genome-scale data conveniently provide rich informatiooud the key processes oc-
curring within the genome and proteome. Next, we reviewdhrepresentative data

and the techniques that are used to generate them.

Transcription factor binding data

(Transcription factor) Binding data directly identify @ractions between proteins and
DNA in vivo, particularly between transcription factors and theigéargenes. Such
interactions fundamentally define the underlying regulattetwork and reflect the
binding kinetics of the constituent molecular species égeand proteins). Binding
data can be obtained with high-throughput technologiek ascChIP-Chip93§]. Still,
binding is only a necessary condition for regulation. Mamgtpositives at the binding

level can be expected to be false positives at the regulétoey.
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Microarray gene expression time data

Microarray gene expression data record the levels of gegiag lexpressed in order to
determine the set of genes that arfatentially expressed between two experimental
treatments or conditiond 4. If microarray is used in expression profile experiments
that are conducted at subsequent time points, the resdiitagconsist of gene expres-
sion level measurements taken at either uniformly or unig\gistributed time points.
Gene expression data receive special attention in genaesesrch, both because of
its rich information and genome-wide coverage. Howeves,dhta is prone to high

degree of variability and noise due to inherent problems&eftéchnique.

Protein-protein interaction data

Protein-protein interactions play critical roles in diatg most cellular process, such
as enzyme-complex formation and catalysis. In essencerniattion from protein-
protein interactions not only potentially reveals setsrot@ins that are involved in the
same pathway, but also can be related to transcriptionalatgn level in the sense that
interacting proteins are often co-expressed and co-kexlio the same sub-cellular
compartment. Protein-protein interaction data can beiddsby the high-throughput
scaling of technologies that exhaustively probes all theeqt@al interactions within
entire genomes, such as the yeast two-hybrid sys@din However, these methods
can stiter from high false positive and false negative rates owirthéa inherent lim-

itations [140Q.

The availability of these data makes it possible to undedstgene functions and

interactions. In this way, key gene or gene combinationsbeafound to explain spe-
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cific cellular phenotypes which is the physical manifestgitthange brought about by
altered gene expression, e.g. disease susceptibility.ekAemit is important to recog-
nise that high-throughput methods generally sacrifice iBpig for scale, yielding

many false positives and high-level noise in the data. Sgeree expression time se-
ries data provide dynamic information about cell actigtithey are the main focus of

this thesis. The other two data types will be used in Chapter 4

1.1.2 Microarray Data Acquisition

Of the three types of data, only microarray gene expresatmahalysed in this thesis
are time series data. Microarray data are obtained fromgaries experiments to asses
gene expression profiles in order to extract genomic inftionacross time or under
different experimental treatments. Gene expressions overciimdoe captured and
recorded into a succession of numbers, on the scale of teahewsands of genes. The
dynamic information in time series data is useful in studytasual relations between
time series, which are essentially equivalent to regwatelationships between genes.
Ideally, this will ultimately lead to mapping out the regidey circuits in the genome
[146].

Microarray is a high-throughput technology that can prevgéne expression mea-
surements for thousands of gene simultaneously. A miagaras a collection of
DNA products printed onto a glass slide and each productdasip for an individual
gene. mRNA from two biological samples are fluorescentlgaand hybridised si-
multaneously to probes on the array. Through competitiadibg of these probes to
the gene-specific DNA products a relative abundance of #ra gvithin the two sam-

ples can be determined by capturing fluorescent signalrnmdton for each spot for
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the two separately tagged probes. The underlying hypottaesdghat the mRNA abun-
dances in probes reflect the expression levels of the camelspg genes, and that the
MRNA abundances decides, as a result of the detection réreysh of the signal under
the excitation of a laser scanner, because abundant sespuailicgenerate strong sig-
nals and rare sequences will generate weak signals. Inwthrels, microarray takes
shapshots of gene expression levels of all the genes in anisrg.

To obtain microarray gene expression time series, micagaxperiments are per-
formed at diferent time points with either uniform or uneven intervalsua@titative
data are extracted from the resulting microarray imagesnalised and processed into
a gene expression matrix. Each row in this matrix describe€kpression levels for
one gene across time. Consequently, gene expression tireg data are obtained as
sequences of gene expression measured at successive titeegb@ither uniform or

uneven time intervalsifl4].

1.2 Statistical Inference for Functional Genomics

Statistical inference for functional genomics aims atgné¢ing statistical inference
methods and the understanding of functional mechanismbeeofjenome 40, 71].
To achieve the central goal of functional genomics, whiclegsentially extracting
biologically relevant network topologies, various typésehniques such as clustering
and network modelling can be utilised, so that problems essyistematically tackled.
This section provides a summary of relevant literature adblpm formularisations

for the issues presented in this thesis.

10
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1.2.1 Tight Clustering of Gene Expression Profiles

To deal with the large-scale gene expression data, claogtesiusually the initial step
towards biological inference for gene functions. Clustgraims to assign genes that
share similar expression patterns into the same clustgroitides an ficient way
to extract information from large-scale gene expressida dats. Relevant genes can
be screened out for the biological process under study, ssiple functional rela-
tionships can be found among tens of thousands of genes onraamay. The un-
derlying assumption in clustering gene expression datzaisdo-expression indicates
co-regulation, thus clustering should identify genes #iatre similar functions. This
biological rationale is readily supported by both empiraaservations and systematic
analysis 17].

Given this promising direction, various clustering methbdve been proposed to
process the tremendous amount of microarray data,7de&72)] for excellent reviews
of current techniques. Looking at the prevalence of the nexisting algorithms there
may be no need to implement new ones. However, continuouslaewent of the
microarray technique brings new challenges on a regulas.bdoreover, many ex-
isting methods were adapted or even directly applied to gapeession data from
conventional clustering algorithmgZ], which may fail to meet current needs.

In particular, tight clustering arose recently from a degsw obtain tighter and
potentially more informative clusters in gene expresstadiges [L38. Scattered genes
with relatively loose correlations should be excluded ftbi@ gene clusters. Although
various model-based clustering methods have been proplesedf them address the
need of obtaining tight and hence more biologically meafuihgusters. Objective

methods that are specifically designed to address pergmeblems and new methods

11
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are therefore essential. In Chapter 2, a new tight cluggeniethod will be proposed to

meet these requirements.

1.2.2 Clustering Validation Using Functional Annotation

With many clustering algorithms available, it is non-talvio select one that can best
tackle the challenges posed by the genomic data. Systefoatialation is therefore
needed to prove the feasibility of clustering methods is tigld. While it is still open
to debate how a validation system should be constructecefoe gxpression clustering
to verify the usefulness of the schemes, one promisingtities assessing the perfor-
mance of an algorithm with existing biological knowledgeait€mes from biological
research have been gathered and translated into databaselecades, which provide
specialised information to describe the functional prefidé genes. Exploiting infor-
mation from these databases can facilitate integrativlysisaof experimental results
and existing knowledge, and further provide evidence ftida#ion studies.

One of these databases, the Gene Ontology consortium 3J) pffers a wealth
of complementary biological knowledge and is one of the nrogiortant ontologies
for gene functions. Its structured vocabulary not only pites straightforward infor-
mation about the gene functions, but it is also computalipaacessible to quantify
the relationships between genes. In essence, mappingstarp between genes and
structured functional categories, and thereby annotagemges with a defined set of
functions. Potentially, genes can be grouped accordiniggio functional mappings to
corresponding GO terms, which provides a good validatiatf@m for a clustering
method.

Consequently, many GO-driven methods have been proposestablish func-

12
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tional relationships between genes and, ultimately, tesssthe quality of gene clusters
[2, 29, 88]. However, none of them has systematically taken the straghformation
in GO into account. In Chapter 3, a GO-driven clusteringdation index is proposed
to make full use of the information provided by GO.

It is worth mentioning that another way of utilising GO knedbe in clustering
analysis is to incorporate GO information into the clustgrprocess in the hope of
building more biologically meaningful clustergZ, 59, 129. For example, it is pro-
posed in 129 that the number of clusters can be determined by extrattiel-based
knowledge to be used as input to their semi K-means algorithlowever, the ef-
fectiveness of this strategy greatly depends on the acguriaknowledge about the
organism under study. It neglects the fact that existing\tedge and the true pat-
terns do not necessarily coincide and may as a result faistmder the true biological
patterns. One of the reasons for this contradiction origgm&rom the incompleteness
and false positives of biological databases. After all,apartant goal for clustering
is to identify novel functional annotations. Indeed, it e tdesire of understanding
the gap between statistical findings and current biologicalerstanding that drives

researchers.

1.2.3 Transcriptional Regulatory Network Reconstruction

A gene regulatory network is a collection of genes and geterantions with each
other indirectly through their RNA and protein expressionducts and with other
substances in the cell, thereby regulating the rates athwgeoes in the network are
transcribed. Reconstructing, or reverse-engineeringe geanscriptional regulatory

networks can be defined as the process of identifying regglatteractions among

13
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Figure 1.3: An Arabidopsis circadian gene network of sixege(adapted from Locke
et al[87]). Circles are proteins and DNA segments represent genes.
genes from biological data. Nowadays, genomic, transampt and proteomic data
are in massive production. By using these high-throughgtat,dranscriptional regula-
tory activities are modelled on a genome-wide scale. Mopbitantly, gene network
reconstruction helps clarify the role a gene plays in thestcaptional regulatory sys-
tem, so that relevant genes, such as important transarifatadors, can be screened out
and chosen for further experimental manipulation to helpsotidate the knowledge
of the system under investigation.

As an example of a transcriptional regulatory network, eadran gene network in
Arabidopsis Thalianas illustrated in Figurel.3as studied in§7]. One of the regula-
tory relationships in this network is the protein TOC, tdggtwith light derived input

signals, activates the gene LIHKYCA1 transcription, while the protein LHZCAL in

14
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turn has regulatoryféect on the transcription of the gene TOC.

Although gene expression data from microarrays are tylgioaked for the purpose
of transcriptional regulatory network reconstructid@j, [it often lacks the desirable
specificity and accuracyl], since the information in the data is often entangled in
a complex mixture of various types of noise. When more thaa lminlogical data
source is available, integrative analysis is likely féeo significant advantages, and is
currently a subject of ongoing research. As shown in Se@idnDNA, RNA, and
protein interact with each other. The information from alige realms must be com-
bined to bring full understanding of the global cellulausture. Integrative inference
algorithms serve this purpose by exploiting, in additioexpression profiles, protein-
protein interaction data, sequence data, protein modditaiata, metabolic data and
more, in the inference proces3 |

For integrative approaches, existing techniques haveegidtom the simplest vot-
ing model l47 to more sophisticated Naive Bayesian Networ&2 [L2(, and pro-
gressively to substantially more complex systems nowaf,s127. However, so
far there is no robust method that can be routinely applietbtsy and heterogeneous
data and yet beficient enough for handling gene expression time selig§ [L61].

One of the issues in designing such an integrative systesasafiom the diverse
formats of genomic data, which, in particular, is made exyliy the high-dimensional
microarray time series. The study of inferring gene netwdr&m microarray time se-
ries data alone fits well into classical theories of dynamgtems. However, for exist-
ing time series inference methods the microarray time sare very often too short to
provide enough information about the regulatory relatips underneath concomitant
behaviour changes.

Moreover, interactions between genes in a regulatory m&t@o not necessarily

15
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imply direct physical interactions, but can also refer wiiact regulations via proteins,
metabolites and mRNA that have not been measured direatippQtational analysis
that can diferentiate between these two types of interactions are itaioto bring a

better understanding to the underlying network structiew, objective methods are
needed in order to address these problems outside the brgwfddassical theories.

In Chapter 4, a new gene regulatory network inference meithgdoposed to make
integrative inference from multiple data sources to insegaredictive accuracy and to

address these issues.

1.3 Thesis Overview

1.3.1 Thesis Contributions

Although biologists possess a basic understanding of trehamsms regulating the
flux and flow of information through this complex multidimémsal regulatory sys-
tem, they have not yet determined individual roles of mosegéan the transcriptional
system. This thesis presents computational tools to hédp gene functions, utilise
current biological knowledge, and discover gene regwatetationships. The ap-
proaches combine ideas from signal processing, graphythBayesian models. In
particular, it presents algorithms for gene clustering aeiivork modelling, and solu-
tions for inferring from large-scale, noisy and diverse@ait data. In this respect, it
points out that iiciency, robustness and flexibility are the key to successgiplica-
tions of statistical inference algorithms to this partandield of research.

One contribution of the thesis involves the discussion ebathges and limits in

current gene expression clustering research. In partjcwia address the emerging
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problem in analysing gene expression data as discussecctioisé.2.1, that gene
clusters often need to be tightall enough to provide strong evidence for gene func-
tion discovery. Although various clustering methods hageerbproposed, few of them
address this need of obtaining tight clusters. At the same,tscattered genes with
relatively loose correlations within clusters should beleded from gene clusters. We
point out that there is little work dedicated to this part&ruarea of research in the
literature. In response, a new tight clustering algoriteproposed specifically aiming
at the usually short gene expression time series.

The second contribution concerns utilising current biaabknowledge for quan-
titative clustering validation. In Chapter 3, we analyserent progress in this field
and bring up limits and challenges, before laying out a ‘aiah framework specifi-
cally designed for GO. Two validation indices have been hipexl, based on a new
term-term distance defined within the realm of graph the@rgsigned to overcome
the challenges aforementioned in Sectlo?.2 the proposed validity indices take into
account the variations in biological specificities for G@s, the strength of relation-
ships between terms, and the graphical structure of GO.

Another contribution involves proposing a new computaionethod for integra-
tive analysis of heterogeneous data sources. Chapter dnpsess Bayesian integrative
framework for transcriptional regulatory network reconstion with a Markov Ran-
dom Fields 80] component that applies the tight clustering method predas Chap-
ter 2. A stochastic process for parameter estimation igydeslito achieve robustness
to noise, yet the system remairfi@ent enough to facilitate large-scale analysis. This
chapter not only addresses the issue of integratifigrént formats of genomic data
by providing a simple yetféective solution, but also reveals diverse characteristics

different types of biological data.
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1.3.2 Thesis Organisation

Chapter 2, 3, and 4 constitute the three core analyticalteramn this thesis. Each
chapter has its individual section of literature reviewpasising on the research gaps
in the current literature. In an attempt to bridge these gasslution is proposed and
demonstrated to befective in the experimental section, independently.

Nevertheless, all chapters are connected in one way or@ndthe partial mixture
model-based clustering algorithm proposed in Chapter\Z&seaas a preliminary step
towards inference and is used throughout the thesis whesssary. Complementary
to Chapter 2, Chapter 3 introduces a Gene Ontology-driviateon method, provid-
ing evidence of the superior performance of the partial ametlustering algorithm.
Moreover, it provides useful insights into the complex stuwe of Gene Ontology.
Chapter 4 constitutes the gene network inference part efarek. In Chapter 4, an
integration framework for combining filerent biological sources is proposed for tran-
scriptional regulatory gene network reconstruction. Sactetwork is useful in dis-
covering relevant network structure and identifying intpat genes in certain cellular
process.

Chapter 5, the concluding chapter, summarises the findirtgeostudies in this
thesis, while providing insights into their implicationachimpacts to this field. It
reviews the goals set in Chapter 1, objectives raised andison$ presented in the

subsequent chapters, and points out promising directanfsifther research.
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Chapter 2

Partial Mixture Model for Tight

Clustering Gene Expression

2.1 Introduction

With the advances of high-throughput microarray techrsquene expression data
clustering has been an active research area. Gene exprekstering aims to reveal
groups of genes that share similar functions in the biollgathways. In particular,
consider gene expression time series experiments, whedata are made up of tens
of thousands of genes, each with measurements taken at @itifi@rmly or unevenly
distributed time points. For such large-scale data setbi@géne expression time
series, clustering provides a good initial investigatiool t which ultimately leads to
biological inference.

In this chapter, we review previous advances, discussiegiptroblems and pro-
pose a novel clustering algorithm specifically targetingegexpression time series.

Some of the materials in this chapter have appeared befqdbith The rest of this
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chapter is outlined as follows.

In Section2.2, we first review probabilistic models on which some populas¢
tering methods are based, and the parameter estimatiorodsethat are routinely
applied, in order to understand the intrinsic problems iistexg clustering methods.
Then through a discussion of current research trends, we gtad conventional clus-
tering algorithms cannot be simply adapted and appliedigofigld. In contrast, in-
novative and objective set ups are needed to tackle newesnshin high-throughput
genomic data in the hope of revealing biologically meanihgésults.

In response to the existing problems and new challengestialpaixture model
teamed with a minimum distance estimator is formulated fEmegexpression tight
clustering in Sectior2.3. The inherent robustness of the minimum distance estima-
tor is experimentally proved, which makes it a powerful téal outlier detection in
model-based clustering. In the comparative experimeng&ention2.4, both biolog-
ical and statistical validations for the proposed methalcanducted on a simulated
data set and two real gene expression data sets. The superiormance of the pro-
posed method is confirmed by both biological and statistiaitlity indices. More-
over, the experimental results show that the tight clustétained by our proposed
method are more biologically informative. This further yes the suitability of the
proposed method in this field.

The study concludes by providing new biological hypothé&sim the integrative
analysis of the machine learning results and current bickdnowledge. We show
that tight clustering is capable of generating more profbunderstanding of the data
set, well in accordance to established biological knowdedgalso provides new inter-
esting hypotheses from the interpretation of clusterisglts. In particular, we provide

biological evidence that scattered genes can be relevdrararinteresting subjects for
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study, in contrast to prevailing opinion.

2.2 Existing Methods and Future Needs

Various model-based methods for clustering gene expmesisita have been proposed
following the advances of microarray technique. Among thémite mixture model
methods are the most popul&3[ 152. Finite mixtures of distributions havetered

a sound mathematical-based approach to statistical nivagl¢3i6].

A typical routine using these methods consists of two stagiest, a finite mixture
model of the formp(x) = 3K, wipi(x, 6) for a random variable is designed.w; is
the proportion of the corresponding denguyx, 6) with parameterg. Assuming that
there is an underlying true modea¢nsity, three sets of parameters need to be estimated
or explicitly specified: the number of clustdfs the proportions of clustens and the
parameter settingsfor the densities. Then, the optimal parameters for the irenge
systemically found, so that the fitted mogiiginsity is as close to the true mofdieinsity
as possible.

For modelling time serieq;(Xx, 8) is usually designed with a linear model to capture

the dynamics in time series. Two of the most popular linead@are described here.

2.2.1 Linear Models

In order to design an appropriate model, continuous reptaten of gene expression
time series are preferred to capture the system dynamicsy &sting models for

fitting gene expression time series fall into one or more eséhcategories: the spline
regression modelgl] 16, 63], the mixed €ects models92, 101] and the autoregres-

sive models151]. Next, we briefly review some of these representative neitethe
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literature.

2.2.1.1 Spline model

Spline models have received special attention in the aingteommunity for their
desirable properties. For example, the use of piecewisallegvee polynomials results
in smooth curves and avoids the problems of overfitting. Thkemodel in §] as an
example, cubic polynomials with B-spline basis are usedifting gene expression
time series data. Cubic polynomials are the lowest degrgmpmials that allow for a
point of inflection. The advantage of B-spline lies in tha tregree of the polynomials
is independent from the number of points and that curve sisagantrolled locally.

A cubic spline consisting afparameterised polynomials can be formulated as

y(t) = > ASI(0), 2.1)
i=1

wherey is a vector of data4; are the cofficients andS; are the polynomialst is the
parameter which, in the case of time series analysis, reddgnse.

For the application to gene expression time series data,desirable to use B-
spline basis to obtain smoothing spline, as smoothing eplse fewer basis cfie
cients than observed data points thus avoiding overfittBigppose observations are
made amtime points, this imposes the constrairt m.Using the Cox-deBoor recur-
sion formula [L10, the B-spline basis can be calculated as

1 if s<t<si

bjo(t) = (2.2)
0, otherwise

22



2.2 Existing Methods and Future Needs

t—-sj Sj+kr1 — 1

bix(t) = S Djk-1(t) + _

S 1 J+1bj+1,k—1(t)- (2.3)
As the order of the basis polynomialsjs 4 for cubic polynomial.s; are the knots
wherej is in the range of [L + k]. As splines are piecewise polynomials, the abscissa
values of the join points where the polynomials join areezhknots. Knots give the
curve freedom to fit more closely to the data. The use of knotores particularly
suits microarray data analysis, since it can be defined tatlereiniform or unevenly
spaced. According to the purpose of the microarray experispé is sometimes de-
sirable to place more knots where biological activity i®imge, instead of using the
uniform knot vector as ird].

For applications, take the mixture model #] s an example. Let denotes gene

expression data afgeneqy;|i = 1...n}, the mixture model is also a mixeffect model

with both cluster specific and gene specific ftioeents

Yi = Si(uj + i) + & (2.4)

u; denotes the average value of the splinefigcients for genes in clasg andy;
denotes the gene specific variation fméents, depending on the class assignmjent
& iIs Gaussian noise. Both j ande; are normally distributed with mean zero and

varianced; ando?, respectively.

2.2.1.2 Autoregressive model

Supposé& = {yili = 1,2, ..., n}is a multivariate stationary time seriesrofariables and
t time points. Ap-order vector autoregressive model specifies the value afiahle at

a time point as formulated in Eq2.5). Y(t) is a linear combination of a constamiean
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value, the past of the multivariate time series, and noise
P
Y(t) =B+ A Y(t-u)+a(t). (2.5)
u=1

B is a constant matrix of size x t. & consists of vectors of residuals|i = 1...n},
each is assumed to be zero mean noise with variariceA is an x n codficient
matrix representing the dynamic structure. A special cdsbeop-order autoregres-
sive process, the first-order autoregressive model is afv@sidered when analysing

microarray data for the sake of simplicit§1, 102 151]
Y(t) = B+ AY(t - 1) + &(t). (2.6)

WhenA is a constant matrix, this model assumes homogeneity atines The pa-
rameters are often estimated by optimisation methods suttteanaximum likelihood

estimator (MLE) B3, 108 141].

2.2.2 Parameter Estimation

For the task of parameter estimation, the maximum likelthestimator (MLE) is one
of the most extensively used statistical estimation tesnes in the literature. For a
variety of models, maximum likelihood functiorts, 101, 141] have been applied for
estimating parameters of probability distributions. Th&son often involves max-
imising the likelihood over each parameter by iterativghplging the expectation-
maximisation (EM) algorithm35]. Examples abound| 63, 92, 94, 101].

The EM algorithm alternates between inference about théemdariables (the ex-

pectation step) and maximal likelihood estimation of thedeigparameters (the max-
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imisation step). The expectation step in EM first uses tempodata to represent a
reasonable guess for the hidden variables. Then the paragstimation proceeds as
if the data is complete, maximising a likelihood function tbe parameters. Once
a solution for the parameter estimates is produced, it id ts@lace the temporary
data values with better guesses. The two-step processisdheated again until con-
vergence, i.e., when thefterence between the parameters updates is smaller than a
predefined value.

For example, EM is used to determine the maximum likelihcgtdeation for the
model in @] (see Eq.2.4)). Cluster memberships are treated as missing data. The
optimisation problem can be decomposed in the following,v@aagumingy; has been

observed:

(Y. 7,0, o, 1) 2.7)
=p(Yhyij, T, o2, 1)) p(yi,jIT, 0%, 1)
SR — exp[—zfiz(vi = Siluj + i) (Y = Siluj + y1)]x
i

(27-() i g-Ni

1+
W eXp[—z_iji’m’J]’

whereZ(jli) is a binary indicator variable that assigns each gene tctigxane class.
The E-step finds the probability of each gerelonging to clustey, p(jli),

pip(Yilyij» T, 02, 1))

. 2.8
2k PeP(Yilyik, T, 072, 11k) 28

p(jli) =

The M-step maximises the parameters with respect to theapility p(jli). And
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at the end the cluster probabilipf are updated through

n

=1 > i) 29)

The two-step process is then repeated until convergeneadéhed. Each gemés then

assigned to claspthat maximise$(jli).

2.2.3 Limitations of Existing Methods

It is observed that model-based approaches generallywachigerior performance to
many others46, 63, 133 153. Nevertheless, current methods generally rely on cor-
rect model assumption. For example, the autoregressivelasdiescribed in Section
2.2.1.2requires Markov property and stationari84]. The former requirement may
not hold for some time series data. Stationarity means teesythat generates time
series should be time invariant. Thus the temporal straatfithe data and the length
of sampling intervals are not considered in this approach.

Also, rigorous statistical inference is needed for thenestion of model parame-
ters. The parametric nature of existing methods requiregpamisation process which
might be time consuming. The initial values to start the mpgation often need fine
tuned. To be specific, the problem with the quasi-Newton tyfpeptimisation meth-
ods B1] is that the quantities can be estimated only when theyfgatisne constraints,
while with EM, some parameters have to be explicitly spetifiad others have to be
initialised. For example, ind], 101, 151] the number of clusterk has to be knowm
priori, which is not practical in microarray data analysis. Mompvthe existence of
local optima of the likelihood function and the requiremfanmtan initial configuration

mean that several runs are needed before a satisfactotgrahgsoutcome is produced.
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Apart from the aforementioned issues, clustering algoréimay have other inher-
ent problems. For example, SplineClustég][is an dficient hierarchical clustering
program based on nonlinear regression splines. The usentihear spline basis can
accommodate non-stationary time-dependence and unederaddls in the data. Start-
ing from singleton clusters, the idea is to successivelygmetusters based on a po-
tential function to form a dendrogram. The algorithm fogent and straightforward
to visualise. However, as a common problem to all hieraathstustering methods,
the broadest clusters often contain many scattered gedesaarsometimes be hard to
interpret, as later merges often depend on aggregated resasiclusters.

In summary, existing methods have their inherent problévhdtivariate Gaussian
models #44] ignore the time order of gene expression and therefore atasmecount
for the correlation structure in time series da@d][ Spline models4, 63, 92 94]
and autoregressive models5fl], such as the ones presented in Sec@dal.1and
Section2.2.1.2 generally apply EM for parameter estimation, and are cdatfmnally
expensive for large data sets. Moreover, there has beensaxteuse of maximum
likelihood estimator (MLE) 78] for model parameter estimation. By contrast, the

minimum distance estimator (MDE)(] has been largely ignored.

2.2.4 Emergence of Tight Clustering

Intuitively, tight clustering refers to methods that carbloiét upon an existing partition
to obtain core patterns that are more easily interpretabhe. initial partition can be
obtained either empirically or by using generic algorithsush as the K-means algo-
rithm. Only clusters of closely related genes are then sgpdrfrom these clusters,

leaving scattered genes out. As a result, more informatonpossibly be revealed
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from tight clusters. For example, being in the same tighsteluis strong evidence
that the genes share similar functions. Or, if genes in onetional category are allo-
cated into diferent tight clusters, one may pursue possible explanatidodiing into
these clusters. One possible result of such investigasiohat some genes have un-
known functions thatféect their expression patterns, hence leads to new genedanct
discovery.

In this sense, to obtain tight clusters, some genes shoutthbsified as scattered
genes, if forcing them into clusters will only disturb bigloally relevant patterns.
Indeed, the issue of scattered genes has received moréiattenly recently 71,
138. Currently, there are few methods to deal with scatteretkgevith respect to the
analysis of gene expression time series.

To the best of our knowledge, the work df3g is the first to address the problem
about tight clustering. But it relies on heavy computatioe tb the nature of random
resampling. For the methods that address the problem désedtgenes, one popular
method is MCLUST 44, 153. MCLUST is an unsupervised method based on multi-
variate Gaussian models. The models are characterise@ipygdometric features for
the clusters: shape, orientation and volume. Each timedberbodels are selected for
the data set being clustered and then the model parametestanated by EM. It was
proposed in45] that outliers can be modelled by adding a Poisson proceapanent
in the mixture model. A recent implementation of MCLUSA7] allows an additional
component of homogeneous Poisson process for modellitigssgenggaoise. This
method relies on correct model specification and the rolesstof the parameter esti-

mator.
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2.3 Proposed Tight Clustering Method

When analysing gene expression time series data, spdeiatiah needs to be paid to

the following issues:

e Number of clusters The main dfficulty about the model-based methods con-
cerns the number of clustek§ which has to be specified most of the time. It
is particularly problematic for microarray data, which nise/evenly distributed
in the gene expression space and thus may not have any Hwaigdrd solution

featuring isolated clusters.

e Scattered genesRecently, it has been proposed to allow a noisy set of genes
not being clustered1f3§. In microarray experiments, it is generally expected
that many genes could show uncorrelated variations and radated to the
biological process under investigation. Forcing theseegdanto clusters will
only introduce more false positives, resulting in distdreéusters and diiculty
in interpretation. It is later experimentally verified thraethods that allow for

scattered genes give better accuracy and robustha8s [

e Tight clusters: It is suggested that tight clusters are often more biokgjic
informative, typically of size 20-60 gene&3g. Conventional methods pro-
duce large and loose clusters, while biologists often neetbhduct research
on smaller groups of closely related genes. Thereforet tigistering has been

proposed for obtaining smaller and tighter clusters fromegexpression data.

In this section, we present our partial mixture model akioni to address the above
challenges in a semi-parametric fashion. Built upon theaathges of MDE and par-
tial modelling, the algorithm performs tight clustering iafn naturally incorporates

replication information and allows a set of scattered gené® left out.
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To relieve the system of the tedious parameter optimisaironess, our proposed
partial mixture model is based on the MDE instead of the MLIEerE are many unique
features of MLE, including itsféciency. However the practical deficiencies of MLE,
besides those issues with its optimisation, are the lacklnistness against noise and
its sensitivity to the correctness of model specificatiore décuss in this chapter the
performance of the appealing alternative, MDE, which is legplored in this field.
Inspired by the work of117, 118, MDE is used to relax the system’s dependence on
parameter optimisation. MDE provides robust estimatioairag} noise and outliers,
which is especially appropriate for gene expression daadysis, where data are of-
ten noisy. To show the improvement in performanéem®@d by the new method, we

compare the proposed method to SplineCluster and MCLUSHeexperiments.

2.3.1 Minimum Distance Estimator (MDE)

Given a density functioffi(-), its corresponding parameteérandn variables of interest
x,i = 1,2,..,n, we aim to find the optimal parametefisto approximate the true

parametergy by minimising the integrated squaredfdrence

d(f (). f(60)) = f [(x16) - (x60)]* dx (2.10)

which gives

d(f(@),f(@o)):ff(x|9)2dx—2ff(x|9)f(x|90)dx+ff(xl@o)zdx (2.11)

The last integra[ f(x|60)?dxis a constant with respect & thus can be ignored. The

second integral can be obtained through kernel densitgnastn [L05. Therefore,
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2.3 Proposed Tight Clustering Method

the MDE criterion simplifies to

n

6 = arg ngin[f f(xl6)2dx — % > HxI0)]. (2.12)

i=1

There are many interesting features of MDE. First of all aines with the same ro-
bustness as all other minimum distance technigb2<95, 104, 159. Secondly, MDE

approximates data by making the residuals as close to nomakstribution as pos-

sible b2, 95, 159, which will turn out to be very useful for the model set up te b
described later. These features will be further explainetlibustrated in the experi-
ments. We will also illustrate derivation of the MDE critemifor parameter estimation
for our partial regression algorithm. Owning to space restns, some discussions,

results and elaborations have been relegated to Appendix A.

2.3.2 Weighted Mixture Model with MDE

In principle, the finite mixture model methodology assunied the probability density
function, f(x|¢), can be modelled as the sum of weighted component densifies

weights are often constrained to have a sum of 1. It is reddater that this constraint
is not necessary. More flexible models can be obtained bgvialj the system from

this constraint. A weighted Gaussian mixture model hasdhaf

K
f(X6) = ) whe(Xlu, o), Wy +Wo + Wi = 1, (2.13)
k=1

whereg is the Gaussian density functign,o- are the mean and standard deviati€ms
the number of components, amgl k = 1, 2, ..., K are the weight parameters. However,

by relieving the constraint of ., w, = 1, the system can be extended for overlapping
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2.3 Proposed Tight Clustering Method

clustering inferencel]17] since the sum of the amount of data being modelled in all
clusters can exceed the total amount of data. Later, we withér prove that the
amount of modelled data can also be less than the total anobwiatta. In all cases,
Wy indicates the proportion of data points that are allocatetiékth component. Let

Ok (X|0) be the partin Eq4.12) to be minimised for &-component mixture model, we

have
() = [ 02t 2 ) £(xo) (2.14)
i=1
On the other hand,
f¢(x| 2)dx = ” 1 ex (—(X_“)z)rdx
H T ) Vo P02
1 1  (x=pw)?
= ZJVEI@% exp( 2(%)2 )dx (2.15)
1
- 201

And from [143 Section 2.6],

f¢1(x|ﬂl’ O-E)¢2(Xl/~12’ O-g)d X
2

2 2 2
0'1/.12+0'2,LL1 0105

J)dx (2.16)

2 2 7 2
0'1+0'2 O'1+0'2

=p(u1 — u2|0, 075 + 073) f¢(x|

=p(u1 — /0, 05 + o73).
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By combining Eq.2.13), (2.15 and @.16), we have

f f(x6)?dx

K K K
= f (Z WS (Xt o) + > > Wi (X, D)p(Xe, 7)) dx
K

k=1 1=1

K K
f ZZWkW@(XWk, )¢ (X, o7)dx (2.17)

=1

M
>|7\—
+

k=1 2 \/_O-k

K

K
+Z Wi Wi (i — O, O'k+0'|)
1

k=1 I=

SIS

K
:kZ:; 2ro

Thus from Eq.2.14 and @.17), the distance for th&-component Gaussian mixture

model can be expressed as

Ik (X160) (2.18)

n

K K 2 K
+ZZW|<W|¢(,U|<—M|O O-k+o-l)_ﬁ Zquﬁ(Xul,uk,O'k)

k=1 I= i=1 k=1

Z:2\/_0'k

gk (X0) is a closed-form expression, whose minimisation can bpaed by a stan-
dard nonlinear optimisation method. We use a Newton-tygerahm [36] imple-
mented in R as a function nim().

For example, a one-component model has the following MDtergoin

jea}}
Il

arg mirfgy(x6)] (2.19)
sz n
N 20N ¢ 79

i=1

We aim to further relieve the system from the constraintegdds/ the weight param-

arg rgin

eters, whilst keeping its weighted-component structureéhé next section the idea of

33
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partial modelling is presented. It originated from the féett incomplete densities are

allowed [7], so the model will be fitted to the most relevant data.

2.3.3 Partial Mixture Model with MDE (PMDE)

The weight parameters are of particular importance in agbamixture model. They
allow the model to estimate the componieatnponents, while their value indicates the
proportions of fitted data, so the rest of the data can beculesst scattered geriestliers.
This approach is first described ih[7] for outlier detection. It was suggested ifd]
that by forcing a large scaling parameter in one of the coraptsin the mixture,
scattered genes can be accommodated in this component.veipwartial modelling
provides a more flexible alternative approach, as desctédied

Although it is suggested inlfL7] that the unconstrained mixture model can be
applied for clustering, through our experiments it is cléet if the data overlap to a
certain degree, all components will converge to the biggestponent as a result of
model freedom. Moreover, it is impractical to formulate tirgerion in the form of
Eq.@.18 when it comes to implementation. Instead, we solve thelprolby taking

advantage of the one-component model to formulate oureringt algorithm.

2.3.3.1 The spline regression model

To provide continuous representations of gene expressienderies profiles, a linear
regression model with nonlinear cubic spline bases is setTlye linear regression
model is capable of capturing the inherent time dependeviuée the nonlinear spline
bases help accommodate the underlying stochastic pratdss data. The advantage

of using cubic spline lies in the fact that degree of the poiyrals is independent of
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the number of points and that the curve shape is controlieallio
LetY be the gene expression data matrix of sizem, with nthe number of genes

to be modelled anch the number of time points; can be modelled as
Y=a+QB+e. (2.20)

Q is the design matrix of sizem x q consisting of a linear combination of cubic B-
spline basis functions as described in Bq(and @.3), with g being the number of
knots. The error term represents the residuals taken as a weighted Gaussiahudistr
tionw - N(0, o). a is the intercept and the g-veciiare the regression ctiients.

As stated before, the useful feature of MDE is that it fits datauch a way that
the residuals are close to normal, so that the residual candakelled by a normal

distribution. Therefore, our model becomes
e=Y-a-0Qg (2.21)

Given EQ.2.13, (2.15 and @.21), the one-component PMDE fit for this model has
the form of
R 2 &
0 =arg rrgin[f(wd)(do, 0.))’de — - Z wo(&il0, aﬁ)] (2.22)
i=1

= arg rrgln[zw_rvvzag - ;¢(8l|0’08)]’

whereé = {w, a, 1, ...Bq, 0}, ande¢ is the density of a normal random variable. Alto-

gether there arg + 3 parameters to be estimated.

The number of knotg] determines the degree of smoothing and can be chosen
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2.3 Proposed Tight Clustering Method

according to the quality of data. Detailed discussion of thsue are skipped in this
thesis. Interested readers are referredi8. [In summary, this spline regression model
captures the inherent time dependencies among data, Wieeeerdr term is of partic-
ular importance as it can pick up the noise.

The proposed algorithm is designed specifically for geneesgion clustering, tak-
ing into consideration the issues raised in Secldh3 The knot vector in the spline
model can accommodate uniform or unevenly spaced timegaatnoted in Section
2.2.1.1 MDE, with its robustness, is excellent in detecting ou$fscattered genes.
The number of clusters is determined by the algorithm itd®}f setting a stopping

criteria for it.

2.3.3.2 The stopping criteria

A statistical measure of partition quality, the Calinskdadarabasz (CH) index2fl]
as formulated in Eg.23), is used to design a stopping criteria for the proposed-algo

rithm. The CH index is given as

BS §K)/(K-1)
WS §K)/(n - K)’

CH(K) = (2.23)

whereBS §-) andWS §-) are the between-cluster and within-cluster distancesekfi

as
BSS(K)—ZZ > . x), (2.24)
I=1 x¢C,xjeCy
K
WSgK) = = Z Z d?(x, X;). (2.25)
I=1 x,xj€C
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x; andx; stand for thath and thejth variables. Squared Euclidean distance is used for
distance measuremedt(x;, x;). C; in Eq.@2.24) and @.25 stands for thdth cluster.
The idea behind the CH measure is to compute the pairwise ssquared errors (dis-
tances) between clusters and compare that to the intemtmadfsquared errors for each
cluster. In éect, it is a measure of between-cluster dissimilarity ovighiw-cluster
dissimilarity. The optimum clustering outcome should be ¢time that maximises the

CH index in Eq.R.23.

2.3.4 Experimental Validation of MDE with partial modellin g

The main feature of our model is its ability to identify theykeomponent, if any, and
a set of outliers, in order to find the data structure. Theesfa feasible parameter
estimator is of paramount importance. We empirically \atédour points about the
nature of partial modelling and MDE through fitting four silagimulated data sets.
The performance of both MDE with partial modelling and MLE& one-component
spline regression modeKE1) is compared in terms of data fitting accuracy and ro-
bustness. All data sets are generated by sine functionsgltmagcyclic behavior of
genes, which are widely employed in the literatl82 [152. Time series length is 25
time points which is a typical number of microarray expemtse Gaussian noise is
added to all data. The number of knots for both spline modethiosen to be 15 ac-
cording to the stepwise selection criterion of knots in esgron splinesl23, to allow
for flexibility in curves while avoiding overfitting. Surgingly, superior performance
was achieved for the PMDE fits even on such simple data sets.

We begin with simulating the situation when the number of ponents (3) in the

data is seriously underestimated, as illustrated in Fig(a®. Three components are
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generated from three sine waves simulating gene expredatarof three clusters. The
components comprise 60%, 20% and 20% of the data, respgctiiee MDE with
partial modelling fit is highlighted by the pink line and theLH fit is blue. MDE with
partial modelling locates the major component, while MLBissed to all data. MDE
with partial modelling appears to be superior to MLE in sudtanario. The fact that
the MDE with partial modelling can find the key component withcompromising
the others suggests a solution to the vexing problem whenuheber of components
is unknown, which is often the situation in gene expresslastering. Histograms of
residuals from both fits are plotted in Figuzel(b) and (c) to prove that MDE with
partial modelling fit the data in such a way that the residaedsclose to normal.

More data sets shown in Figugel (d)-(f) are used to compare the performances
of MDE and MLE in diferent scenarios. When there are two components of entirely
opposite behaviors, we can see from Fig@r#d) that the MLE fit is almost flat,
while MDE fits the larger component (60% of the data). Theagitin where lots of
outliers are present is simulated in Figard(e), where the major component has 60%
of the data and the rest (40%) are generated from thr@ereint sine waves. MDE
demonstrates its robustness by capturing the major componkile MLE is biased.
However, in the case of two clusters of exactly equal sizeéhas/s in Figure2.1(f),
MDE fails, as it is designed to capture only one componentiiouwt cannot decide
which one to fit. This can be solved by using a multi-compomendel.

From these examples, it is observed that MDE has the abilitgtentify the rele-
vant fraction of data and distinguish it from outliers, véehMLE blurs the distinction
by accounting for all data. This is of great value for massia&a sets, when the data
structure is unclear and lots of outliers are present. Theotimer fits of the proposed

MDE than that of MLE manifest the fact that the former is marybust against noise.
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All these suggest MDE a promising tool for microarray datalgsis. Interested read-
ers are referred to Appendix A, for comparison of the twoneators on theoretical

ground.
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Figure 2.1: Comparing MDE and MLE by data fitting and theirdaal histograms.
(a) MDE fit (pink line) and MLE fit (blue line) to simulated dagnerated from three
sine waves; (b) Histogram of residuals by MDE; (c) Histogmafmesiduals by MLE;
(d) MDE fit (pink line) and MLE (blue line) fit to simulated datgenerated from two
sine waves; (e) MDE fit (pink line) and MLE (blue line) fit to dawith many outliers;
(f) MDE fit (pink line) and MLE (blue line) fit when two compontmare of same size.

40


3.ps
3.h1.ps
3.h2.ps
2.ps
4.ps
0.ps

2.3 Proposed Tight Clustering Method

2.3.5 The PMDE Clustering Algorithm

Tight clustering, by definition, builds compact cluster®o@n existing partition. The
initial partition, if not available, can be obtained by soemapirical knowledge or
heuristic clustering methods such as K-means. Given aalipdrtition, the clustering
procedure is formulated as in Algorithin

In the initialisation step of the algorithm, an existing{gaon of a data set is provided

Algorithm 1 Partial Regression Clustering
Require: Initialisation: an initial partition is obtained.
repeat
1. Fit partial regression model to each of the clusters;
2. ldentify potential outliers according to a tightnes®#iroldv and discard them
from the clusters;
3. For all outliers, fit partial regression model to form a neuster;
repeat
4. For all genes re-evaluate distances to all existing spkgression models,
assign them to the closest one;
5. Fit partial regression models to all clusters;
6. Calculate CH value based on current partitions;
until the clustering quality measured by CH value fails to improve
7. Take the partition with highest CH value;
until no partial regression model can be fitted to the outliers;
8. Label all outliers as scattered genes.

as input. The tightness threshold,controls the tightness and the number of refined
clusters produced by the algorithm as output. It is definethaseciprocal of the
weighted mean variance of the clusters of the initial partit Therefore, the greater
the threshold is (i.e., the smaller the variance is), thietéigthe clusters become and
the more the clusters are formed. The weights are deternmr@oportion to the size

of the clusters. In the main loop, after each new cluster regeed, all data points
are reassigned in the gene redistribution loop, so theteedutlusters should be of

reasonable size. The rationale supporting our design exhas the features of partial
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modelling and robustness of the MDE estimator, which weelelis able to find the
relevant components in the data, while not being distraoyeautliers. The residuals,
as a natural byproduct of model fitting, can be used as thardistbetween data points
and spline regression models. THeeetiveness of the algorithm depends on the model
normality. Often gene expression data are transformechgyme-processing so that
data normality holds approximately. When the model nornphlolds approximately,
clusters can be found.

In this framework, we use deterministic class assignmerngduhe clustering pro-
cess. Stochastic relaxation or weighted assignment isdedas more moderate than
deterministic assignment. However, it is also commonlpgetsed that stochastic re-
laxation, such as simulated annealing, does not guaraotaeigence. In fact, the
selection of starting temperature or the setting of anngalchedule are often heuris-
tic. An initial temperature, set too high, leads to high comapional cost while an
initial temperature, set too low, yields similar result @sestministic relaxation but in-
curs higher computational cost than deterministic reiarat After intensive testing
with stochastic and deterministic relaxation on the data s& used, we observed
that deterministic assignment strikes a better balancedset computational cost and

clustering accuracy.

2.4 Experimental Results

2.4.1 Experiment on Simulated Data

Simulated data sets are necessary in evaluating the dgopierformance because the

biological meaning of real data sets are very often not clBasides, simulated data
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Figure 2.2: The resulting partition by the partial regressilustering algorithm for the
simulated data set. The first 6 plots correspond to the gerstecs, the left plot in the
third row shows the outliers, the right plot in the last rovosis the whole data set.
sets provide more controllable conditions to test an allgori However, the simulated
data need to share statistical characteristics with bicébgata.

A simulated data set is generated from a maxielj) = a; + Biy(i, ) + (i, j),
wherey (i, j) = sin(yij + wi). a,B,7y,w are cluster-specific parameters and are chosen
according to a normal distribution with mean equal to 2 aadd&ard deviation 1. This

kind of simulation has been used in many studies for clusgevalidation p7, 114.
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In detail, the data set is generated from the following page

x1(, j) = 0.1+ sin(1/3]) + &(i. j).
x2(i, j) = —0.1 + sin(1/3] — 1) + &(i, j).
x3(i, j) = 1.2sin(2/5] — 2) + &(i. j). (2.26)
X4(i, j) = 1.5sin(1/3] — 3.5) + &(i. j).
X5(i, j) = 0.5sin(2/5] — 2.2) + &(i, j).

x6(, j) = 0.6sin(1/3] — 3.8) + &(i, ).

¥ models the cyclic behavior of gene expression patterns.in3® points are taken
from the models in EqA.26), withi € {1,2,...,6}, ] € {1,2,...,,30}. The cluster sizes
are 5060, 70,80, 90, 80. To model the noisy environment of microarray experiragnt
Gaussian noiseis added to all data. In total, 10 outliers are generated bdingdarge
variance Gaussian noise to three sine waves. Altogetheesithulated data set is of
size 440. Finally, we manually reduced the amplitude ofgwa#t of two clusters to
increase the complexity of the simulated data set. The sitedldata in the first two
plots in Figure2.2 have part of their patterns modified and shifted.

The clustering result by the proposed PMDE is depicted imf€ig.2 The correct
partition is achieved, with all ten outliers detected asnghim the seventh plot and the

whole data set plotted in the last one.

2.4.2 Experiments on Yeast Cell Cycle (Y5) Data Set

A clustering method can be evaluated on theoretical grobgdaternal or external

validation, or both. For internal validation, a statisticaeasure is preferred. Our
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algorithm is first validated via the CH measure in a comparisith SplineCluster and
MCLUST, two of the most popular clustering methods in theriture. On the other
hand, a measure of agreement such as the adjusted Rand ARIEX 64] between
the resulting partition and the true partition, if known,offen used as an external
validation criterion. Although a lot of evaluations for rhetls of the same kind are
conducted in this way97, 116 133 152, we note that there is currently no ground
truth, given our knowledge of the biological structurdg][

Recognising this, we set out to evaluate the performanceioéigorithm by sys-
tematically finding biologically relevant evidenc&3 73, 107]. The key to interpret a
clustering outcome is to recognise the functional relatops among genes within a
cluster as well as between clusters. To this aim, we firstigeoan enrichment anal-
ysis for individual clusters based on Gene Ontolod¥4, one of the most important
and widespread ontologies in Bioinformatics. Then, thaal/@erformance between
different clustering algorithms is compared by biologicaldediion.

Yeast cell cycle (Y5) data set

The yeast Y5 data se24l] is popular in the clustering literature for its easy access
bility. Expression levels oaccharomyces Cerevisiaaeasured at 17 time points. A
subset of 384 genes are chosen according to therdnt peak time in five cell cy-
cle phases: Early G1(G1E), late G1(G1L), S, G2 and1¥9Z. Based on their peak
time, this data set was originally clustered into five genssters 152, as shown in
Figure2.3 except the bottom right plot. The original partition makag vf only par-
tial information of gene expression which directly leadghie ambiguities between
gene clusters. This partly explains why many clusteringtigms have poor perfor-
mance (with adjusted Rand inde&3d] lower than 0.5 when it is used as external index

[84, 11€]). The biological structure is still unclear, even in suaahily investigated
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Figure 2.3: The original partition of the yeast Y5 data sehwhe bottom right plot of

the whole data set.

organisms as yeaStaccharomyces Cerevisiae

2.4.2.1 Clustering yeast Y5 data set

Table 2.1: Cross tabulation of the original partition anel BFMDE clustering partition

for the Y5 data set.

Cl1|C2|C3|C4|C5|C6|C7|C8|SG| Total
GlE| 29| 2 |12(19| 3 | 0| 0| O | 2 67
GiL| 5 |52| 0 (10|63 4 | O | O | 1 | 135
S 17802 18|33|11| 1|1 75
G2, 0|0} 0| 0|07 ]|30|10]| 5 52
M 170|230, 0|0 |1]29]1 55
Total | 36 | 62 | 35| 31|84 | 44| 42| 40| 10 | 384

The yeast Y5 data set is chosen not only because it is wellextun the gene ex-

pression clustering literature, but also because of figcdlty in terms of clustering.
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Figure 2.4: The clusters by the partial regression clusgeaigorithm for the Y5 data
set. The bottom right plot shows the scattered genes.

The original partition makes use of only partial informatiaf gene expression which
partly explains why many clustering algorithms have poarffgrenance 84, 114.
Moreover, the average cluster size is still far larger thesirdble for éicient biolog-
ical inference, as can be seen from the right-most colummabfeR.1 which contains
the size of original partition. It was recently suggesteat ttiustering based on overall
profiles is preferred to the original partition on @drent subset from the same data set
[107]. We employ the proposed partial regression clusteringréalgmn to partition the
Y5 data set into tight clusters. By obtaining tighter clusteve expect to obtain more
informative and #icient biological inference. The tightness threshold set to 8 as

a result of estimation during the initialisation and the t@mof knots for the spline
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Figure 2.5: Heatmaps for the original partition (left), @plCluster (middle) partition
and the proposed PMDE clustering (right) partition. Thehbi@r red color corresponds
to higher expression levels and brighter green color cpards to lower expression
levels.

basis is set experimentally to 13 to allow flexibility of theree without overfitting.
The clustering outcome of our algorithm is plotted in Fig@rd. Genes in the
bottom right plot are the scattered genes. The eight ckig@t-C8) with scattered
genes (SG) in the new partition are then cross-tabulatdd tivé original partition in
Table2.1 The top row corresponds to the resulting partition, with @3 denoting
the eight clusters and SG denoting the set of scattered gawh. number in the table
except the right-most column and bottom row is the numbereokg in both clusters

corresponding to its row and column. The bottom row indisdkes sizes of clusters
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of our partition and the right-most column shows those ofdhginal partition. The
two partitions agree on many genes but aldtedin an interesting way. The new par-
tition reveals neat and easilyftirentiable patterns. Also, we examined the clustering
outcome given by our algorithm and by other algorithms.

First of all, to see thefect of scattered gene detection, three algorithms are com-
pared based on the full data set (384 genes). By controllpagameter in SplineClus-
ter we obtained 8 clusters for comparison. The partitiorsigiinal, SpineCluster and
partial regression analysis are illustrated in heatmagisgul in Figure2.5for compar-
ison, where an obvious improvement with respect to clagsdion can be seen in
the PMDE heatmap. The tick marks on vertical axis in eachrhaatindicate where
the clusters are located, while in the PMDE heatmap thetiag) ¢luster corresponds
to the scattered genes. The second original cluster (G1ighat split into the sixth,
seventh, and eighth clusters in the SplineCluster pamti¢©@6, C'7, C'8), and the
second and fifth cluster in the PMDE partition (C2, C5). A elokok at the sev-
enth and eighth cluster in the SplineCluster partition shtlvey diter only slightly
in the peak values. However, in microarray data analysstimtit expression patterns
are more interesting thanftBrent peak values. This is one of the reasons we use a
spline model in our algorithm to capture biologically redet information. Consider
the third cluster in the SplineCluster partition, which @itsinto the sixth and sev-
enth clusters in our partition. The two clusters show twarelyt different patterns,
one shifted from the other. Note that a bit cluster corredpanto tick mark 166-236
in the SplineCluster heatmap contains many scattered atlsméhis is exactly the
problem with SplineCluster as stated in Sect®?.3 From these results, it is obvious
that because of its ability in scattered gene detectionatmarithm reveals more dis-

tinguishable patterns in the data. The set of scatteredsgstiisted in Table2.6 with
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their annotations.

Then we use the 374 genes (excluding the 10 scattered gandsggain obtained
8 clusters for SplineCluster. As there is no biological kiexlge input, comparison
can first be conducted in a purely statistical manner, by tHerdex. MCLUST B4
is a widely used mixture model-based clustering methods Uinsupervised, not only
in determining the number of clusters, but also in seledtegype of model that best
fits the data. The R implementation of MCLUST is used in ouregxpent. For the
374-gene data set it decided on the EEE (Equal volume, shmapergentation) model
and also found 8 components. Our algorithm achieves theebigbH value of 637.4,
followed by 588.3 by MCLUST and 523.3 by SplineCluster. M& values for 10

random partitions is 363.3 with standard deviation of 3.23.

2.4.2.2 Gene ontology enrichment analysis

To investigate how genes within a cluster are functionathated, and how cluster-
ing helps distinguish dlierent functional groups, we apply Gene Ontology enrichment
analysis, introduced in Sectidn2.2to our clustering outcome. In the process, GO
terms that are likely to be over-represented in each of tte@ils are identified. These
GO terms are of interest because they represent the most @orfumctions that the
genes in a cluster share.

The probability that a given GO term is over-represented geae cluster can
be calculated using the hypergeometric distributid81]. The process proceeds as
follows. First, for each cluster, all unique GO terms tha&t associated with the genes
in the cluster are identified. Then for each term, two siatisire needed: the number
of genes in the cluster that are annotated to a term and alrkryenes annotated

to a term. With this information, the hypergeometric disition can be applied to
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identify GO terms that are associated to more genes in aecltisn by chance. The
probability that a GO term appear not merely by chance isatdd by the resultant
p-values. Using the hypergeometric distribution, suppbseet arej genes annotated
to a function in a total ofs genes in the genome, thpevalue of observindy or more
genes in a cluster of sizeannotated to this function is given b¥31]

h-1
oo SN e

i=0

whereO is the number of genes annotated with the function. The Itkesp-value is,
the more unlikely the null hypothesis that the terms appgarhiance is true. In this
way, the over-represented terms are found for each cluster.

We analyse the functional categories that are statisficafér-represented in the
clusters obtained by the proposed algorithms (PMDE clspstard SplineCluster (SC
clusters). For simplicity, we provide the enrichment asayesults in Tabl@.2 and
Table 2.3 based on the Biological Process Ontology. As indicated keyldwestp-
values in each cluster, all PMDE clusters have a statisicagnificant set of cell
cycle related terms (all lowest < 10°°), while for SC only six out of eight clusters
have such significance. We observed that from the remaimnogtusters of poorer
quality (p = 6.35x 1072 and 251 x 104), some genes involved in DNA replication
(SLD2POL12 CDC45etc. [126) were combined into PMDE cluster 5, resulting in
a tight cluster that has a significantly functional overressgntation of DNA strand
elongation p = 5.04 x 107°) and other functions in DNA replication. Such a high
quality cluster is essential for predicting unknown fuoos of genes such 441R151C

andYNLO58Cwithin the cluster.
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Table 2.2: Over-represented GO terms by the proposed PM@ditim for the Y5
data set

Cluster GOID GO term p-values Gene
counts
1 G0:0006118 electron transport 1.06E-06 5
1 G0:0006119 oxidative phosphorylation 5.82E-06 5
1 G0:0042775 ATP synthesis coupled electron transport| 1.13E-05 4
2 G0:0006974 response to DNA damage stimulus 1.09E-06| 12
2 G0:0045005| maintenance of fidelity during DNA replication 2.56E-06 5
2 G0:0000135 septin checkpoint 3.37E-06 3
3 G0:0006268 DNA unwinding during replication 3.31E-09 5
3 G0:0032392 DNA geometric change 3.49E-08 5
3 G0:0006270 DNA replication initiation 5.54E-07 5
4 G0:0005975 carbohydrate metabolic process 7.61E-06 8
4 G0:0006101 citrate metabolic process 0.000164| 2
4 GO0:0006091| generation of precursor metabolites and enerdy.000185| 7
5 G0:0022616 DNA strand elongation 5.04E-09 8
5 G0:0051276 chromosome organization and biogenesi§ 1.73E-08| 26
5 G0:0009719 response to endogenous stimulus 1.79E-08| 17
6 G0:0007020 microtubule nucleation 1.05E-08 6
6 G0:0007017 microtubule-based process 2.92E-08 9
6 G0:0007059 chromosome segregation 1.09E-07 9
7 G0:0000070 mitotic sister chromatid segregation 3.84E-05 5
7 G0:0007001 chromosome organization and biogenesi§ 4.69E-05| 13
7 G0:0016481 negative regulation of transcription 5.08E-05 7
8 G0:0000910 cytokinesis 2.14E-06 7
8 G0:0000278 mitotic cell cycle 1.22E-05 9
8 G0:0000916 cytokinesis, contractile ring contraction | 0.000222| 2
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Table 2.3: Over-represented GO terms by the SplineCludtgrthm for the Y5 data

set
Cluster GOID GO term p-values Gene
counts
1 G0:0006268 DNA unwinding during replication 7.38E-05 3
1 G0:0006267 pre-replicative complex formation 9.54E-05 3
1 G0:0050790 regulation of catalytic activity 0.000178| 4
2 G0:0006260 DNA replication 9.51E-08| 10
2 G0:0006310 DNA recombination 9.44E-07 9
2 G0:0006974 response to DNA damage stimulus | 9.14E-06| 11
3 G0:0022402 cell cycle process 1.63E-06| 16
3 G0:0000278 mitotic cell cycle 3.14E-05| 11
3 GO0:0000074| regulation of progression through cell cygle3.55E-05 9
4 G0:0022616 DNA strand elongation 1.59E-10 9
4 G0:0006273 lagging strand elongation 5.73E-09 7
4 G0:0006261 DNA-dependent DNA replication 1.35E-07 9
5 G0:0007165 signal transduction 0.006354| 4
5 G0:0007154 cell communication 0.010349| 4
5 G0:0030541 plasmid partitioning 0.011825 1
6 G0:0009262| deoxyribonucleotide metabolic procesg 0.000251 2
6 G0:0006259 DNA metabolic process 0.000476 7
6 G0:0006334 nucleosome assembly 0.000587 2
7 G0:0007017 microtubule-based process 9.30E-06 5
7 G0:0007020 microtubule nucleation 4.25E-05 3
7 G0:0009225 nucleotide-sugar metabolic process | 9.01E-05 2
8 G0:0007120 axial bud site selection 1.14E-06 5
8 G0:0000819 sister chromatid segregation 1.66E-05 6
8 G0:0000910 cytokinesis 3.97E-05 7
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In addition, good agreement was found between known bicéddunctions and
gene clusters found by the proposed algorithm. Many clsistethe PMDE parti-
tion are significantly enriched with distinctive cell cyalelevant functions, indicat-
ing a good separation of functional clusters. For exampigster 5 has an over-
representation of DNA strand elongatidd ¢ 1078), and cluster 6 is enriched with
microtubule nucleation and chromosome segregafor: (10-7) which is crucial to
chromosome division. Consistent with their biologicaldtians, two clusters involv-
ing genes expressed in M and earlier phases reveal pattesfighdly different peak
time: cluster 3 contains an over-representation of genagviead in DNA unwinding
during replication P < 10°®) and DNA geometric changd®(< 1077); and cluster 8
is enriched with cytokinesis that is known to occur afterlicgtion and segregation
of cellular components. The two gene clusters are both gicédly meaningful and

statistically sound.

2.4.2.3 Predictive accuracy test

We compared five clustering methods: the proposed PMDE ithgor SplineCluster,
MCLUST [44], hierarchical clustering, K-means, in terms of their pcade accuracy
[133. Since the underlying biological ground truth is unknoweraluation of clus-
tering algorithms for gene data cannot be carried out bylarity measures such as
ARI. Instead, predictive accuracy was proposed to testtiomal prediction accuracy
from clustering. The rationale is that since clusteringmseal at functional prediction
of novel genes, if a cluster has exceptionally high occuesrof a certain gene an-
notationF (p-value smaller than a certain threshold), all genes in thister can be
predicted to be in the functional categdty The ratio of the verified predictions to all

prediction made reflects the accuracy of a clustering algori However, we have to
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Figure 2.6: Predictive accuracy plots for five clusteringimes on Y5 data set. Five
clustering methods are evaluated in terms of their funeligmoup prediction accu-
racy. The five methods are the proposed PMDE (red), Splire&iQviolet), MCLUST
(black), hierarchical clustering (green), and K-meangadhl The higher the curve is
the better the performance is.
bear in mind that this measure greatly depends on the amnotptality of the data set
under study.

Since our results involved a set of scattered genes, we peogp@described below
a slightly diterent criterion to the one irLB3. Suppose a functional categofy, has
Vi genes in a data set of sire If there are in totaV genes belonging to functional
categorie$, F», ..., Fy, the remainingn—V genes are denoted as ‘unannotated’. Such
grouping and the resulting partiti@®y, C,, ..., Cx of a clustering method can be cross-
tabulated to form a table. Letj, (i = 1,2,....,Mandj = 1,2, ...,K) be the {, j) entry
of the table denoting the number of annotated gepebe the corresponding-value,

andn; be the size of cluste€;. Given a threshold, for a K-cluster solution, its
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predictive accuracy is defined as
A(6) = Py(6)/Pc(6), (2.28)

wherePy(0) is the verified predictions ané(6) is the predictions calculated by

K
P => >

J=1 ie(x|pxj <o)

K
Pc@)=> > nj

j=1 ie{xXIpxj<d}

Table2.4lists 68 genes in Y5 data set that are verified to be cell-cyadbged to
their corresponding cell cycle phases, together with taeirotations. Those six cell-
cycle related categories plus a group of ‘Not verified’ geoas serve as functional
categories, so that seven categories can be cross-tabwitethe new partition as
in Table2.5. The bottom row of Tabl@.5 shows the sizes of clusters and the set of
scattered genes. All scattered genes are excluded fronewhalsation. By pooling
results from various thresholds, we obtain curves of ‘preoi made’ versus ‘accu-
racy’ for all methods in comparisofKE8). As shown in Figure.6, the curve for the
proposed PMDE method is above the others, indicating higbeuracy in functional

group prediction.
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Table 2.4: Verified cell cycle related (68) genes in the y&¥astiata set

Cell Cycle

Genes Systematic Names

M/G1 Boundary

YKL185W YLR274W YBR202W YJL194W YALO40C YLR286C YDL127W
YDL179W YGR044C YLRO79W YER111C YBR083W

Late G1, SCB regulated

YMR199W YPL256C YDL227C YEROO1W YNL289W YJL187C YBRO67(

Late G1, MCB regulated

YJL115W YDL197C YORO074C YLR103C YDL164C YPR120C YGR109Q

YPR175W YBR278W YDR309C YDLOO3W YOL090W YDR097C YKL101W

YDR113C YNLO082W YNL102W YBLO35C YNL262W YBR088C YKL045W
YKL113C YAROO7C YNL312W YJL173C YERO70W YDR356W YKL042W,
YPL153C YJL092W YMLO021C

S-phase YBLO03C YBL0O02W
S/G2-phase YMR198W YPR141C
YLR131C YORO058C YGL116W YMR001C YGR108W YPR119W YGR092
G2/M-phase

W

YJL157C YARO18C YIL106W YBR054W YDRO33W YHR152W YDR146C

s)nsay [euswnadx3y '
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Table 2.5: Cross-tabulation of clustering outcome (C1-6@ 8G) with verified gene
functional categories for the yeast Y5 data set

Cell Cycle Cl|C2|C3|C4|C5|C6|C7|C8|SG| Total

M/G1 Boundary 721,200, 0]0]|O0 12
Late G1,SCBregulated 0 | 2 | O | O | 3 | 1| 0| 0] 1 7
Late G1, MCBregulatedg O | 13| O | O |15/ 3 | O | O | O 31
S-phase o|(1|j0,0|0|1]0]0]O0 2
SG2-phase ojofoj0|0}j1|2|0]O0 2
G2/M-phase 2,031,001 0]|8]|0 14

Not verified 2745|3228 66|37 |41|33| 9 | 316

Total 36(62|35|31|84|44|42| 40| 10| 384
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2.4.2.4 Scattered genes

Gene expression

5 10 15

Time points

Figure 2.7: The profiles of seven genes related to Late G1, ieG@lated cell cycle
phase. The red profile is the gene “TIFBR0O67C”, one of the ten scattered genes.
It displays a distinctive pattern from the other six genesaaated to be in the same
functional group.

Another important aspect in our investigation is to studyghbt of scattered genes.
Multiple experiments are conducted with various tightrngsesholdsy, in our par-
tial regression method. In TabR6, the set of scattered genes found in eight runs of
our program with various thresholds and their annotatioedisted. Their frequen-
cies of appearance in these experiments are shown in thenadteq. (out of 8). We
noticed that although these thresholds result ffedent numbers of clusters, the set
of scattered genes hardly changes (Téb& column Feq.). Such consistency leads

one to think about the underlying biological meaning. As almsady been pointed
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out [71], scattered genes can be those individuals that are nefrgléo the biologi-
cal process under study. However, we stress here that timegisa be of significant
interest, as each of them might be a key component of the yeli ¢that may &ect
other components and indeed may be a transcription factongblves. Therefore, its
expression pattern can be uncorrelated to others in thensler study. Alternatively,
a scattered gene can represent a gene whose expressionrdledrby more tran-
scription factors than the other co-regulated genes withisters. Moreover, because
the set of genes under investigation is usually selected pétrforming gene ranking,
there may be others in the complete list that would clustéhn acattered genes. All
these considerations drove us to further investigate #tisfsscattered genes.

Among the scattered genes, five are either not well-undasatsbo unknown for
their functions. Only one of thenT|P1YBRO67Cis verified to be cell cycle related in
phase Late G1, SCB regulated (TaBld, second group). Indeed, according to Table
2.4, one would conclude that all the seven genes in Late G1, SG@Hated phase to
have the same behaviour. However, when their profiles at¢edl@as in Figure.7,
we can see thallP1YBR0670s uncorrelated to the others, making it an interesting

subject for further study.

60



T9

Table 2.6: Details of the set of scattered genes for the yeaslata set detected by PMDE, including their SGD IDs, the

frequencies that they are found across eight experimeniarafus thresholds, and their annotations.

if

Gene SGD ID Freq. | Function
Subunit of the COMPASS (Set1C) complex, which
BREZ2YLRO15W SGD:S000004005 7/8 | methylates histone H3 on lysine 4 and is required in
transcriptional silencing near telomeres
Delta 2-isopentenyl pyrophosphate:tRNA isopentenyl
MOD5/YOR274W SGD:S000005800 7/8 _transferase, requirgd fc_)r bic_)synthesis of the modified t_)as
isopentenyladenosine in mitochondrial and cytoplasmic
tRNAs
Zinc finger transcription factor containing a Zn(2)-Cys(6)
PPR1YLR014C SGD:S000004004 7/8 | binuclear cluster domain, positively regulates transioip
of genes involved in uracil biosynthesis
RNPZYLLO46C, YNLO16W | SGD:S000003969 8/8 | Ribonucleoprotein that contains two RNA recognition nef
TIPYYBR0O67C SGD:S000000271 8/8 | Major cell wall mannoprotein with possible lipase activity
Protein of unknown function that interacts with Ulplp, a
UIP4/ YPL186C SGD:S000006107 8/8 | Ubl (ubiquitin-like protein)-specific protease for Smt3p
protein conjugates
YBR184W SGD:S000000388 8/8 | Putative protein of unknown function
YDL124W SGD:S000002282 8/8 | NADPH-dependent alpha-keto amide reductase
YDR366C SGD:S000002774 5/8 | Hypothetical protein
YLLO47W SGD: S000003970 8/8 | (Notannotated)
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2.4.2.5 Comparative evaluation on scattered gene deteatio
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Figure 2.8: Comparison of performance of PMDE and MCLUSTuutlier detection.
A small index value ofNV'S Sindicates better performance in outlier filtering. PMDE
performs better than MCLUST with large number of clusters.

To further assess the proposed PMDE’s strength of scattgreed detection, the
proposed algorithm is compared with a recent modificaticch@MCLUST, which al-
lows an additional component of homogeneous Poisson éaescattered gengmise
[47]. The idea is for each method to filter out scattered genestlaer, instead of
analysing the scattered genes, compare the quality of theefil data sets in terms of
within-cluster sum of squaré¥' S Sas defined in Eq2.25. If an algorithm is stronger
in outlier filtering, tighter clusters should be found in thiéered data set, hence a
smaller value oMWWS S Since the number of scattered genes identified by the two
methods may vary, when the sets of scattered genes filtetduyalifferent methods

are of diterent sizes, we randomly sample a subset of the same size as#ller set
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from the lager one and return the leftovers to the filtered dat so that the filtered data
sets to be investigatgdustered are of the same size. Because the clusteringyquali
may be #ected by the returned genes, we repeat the process of themagampling

of scattered genes and the clustering of the filtered datb0setnes, and take the av-
erage value ofWS Sto compare against th& S Sof the clustering result by the other
method.

We obtain clustering results with the number of clustersinging from 4 to 13 for
Y5 data set from both the PMDE and the MCLUST. The results kel in Figure
2.8. We can see that the proposed PMDE performs better with rangeoer of clusters,
K, but not as good as the MCLUST with smallker However, this does not mean that
the MCLUST outperforms the PMDE because the PMDE is desigmsthrt with an
initial set of clusters and iteratively split the currentistlers if the splitting can lead
to tighter clusters. Therefore, the clustering resultsheyRMDE with smaller values
of K are not “final” but just “provisional”; when compared to th&nal” results by
the MCLUST, the performance of the PMDE appears to be infektmwever, when
the results by the PMDE is more mature ggets bigger, for example whek is
greater than or equal to 7 as shown in Fig@r& the proposed PMDE consistently

outperforms MCLUST.

2.4.3 Experiments on Yeast Galactose Data

Yeast galactose data set
The yeast galactose data sé][consists of gene expression measurements during
galactose utilization iraccharomyces cerevisia&xpression levels were measured

across 20 experimental conditions representing 20 pextiorts in the GAL pathway.
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Figure 2.9: Expression data across 20 time points in foustfanal categories of yeast
galactose data.

A subset of measurements of 205 genes whose expressiompatélect four func-
tional categories in the GAL pathway was chosen and clustereviously P7, 134.

The four gene categories given as ground truth reflect fowtfanal categories. Com-
pared with Y5 data set, yeast galactose data set show mairggdishable expression
patterns, as can be seen from Fig@r@ This data set can represent a case when the

experimental data are agreeable to existing functionafpmnétations134).

Experiments are conducted on the yeast galactose datalseh mas more agree-
able correlations to its functional interpretation thaa yleast Y5 data. For this data
set, our partial regression algorithm yields 4 clusters @sdattered genes when the
tightness threshold is set to low value. The four clusteds@@) with scattered genes
(SG) are then cross-tabulated with the original partitromable2.7. We take 4 as clus-
ter number, since it is also in accordance with prior knogédnd get partitions from

all five algorithms. The bottom row of Tab®7 contains cluster sizes for the original
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Figure 2.10: Scattered genes in original cluster 2 of thety@alactose data set. The
expression profiles of some scattered genes detected bydpesed algorithm are
plotted for the yeast Galactose data set. This plot show&xpeession patterns of
all 15 genes in original cluster 2, among them the 3 colorategare the detected
scattered genes.
partition and the right-most column contains cluster sipeghe resulting partition.
Each number in the table except the right-most column animotow is the number
of overlapping genes in both clusters corresponding t@itsand column. As a mean
of statistical validation, CH measure is applied to the &bfive algorithms PMDE,
Spline Cluster, Hierarchical, K-means, and MCLUST, re$ipely, giving values of
365.6, 331.1, 360.1, 255.3, and 364.5, respectively. S is no given functional
categories for this data set, the predictive accuracy imdexot be applied. Instead,
we focus on evaluating the power of PMDE in scattered gerectlen.

There are interesting findings from the investigation ofgaeof scattered genes.

For instance, one gen¥NIR125Wbelonging to the original cluster O2 is classified as

a scattered gene. Of the other 14 genes in original clustet @re clustered into C2, 1
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Figure 2.11: Scattered genes in original cluster 3 of thsty8alactose data set. The
expression profiles of the 3 scattered genes in originatels They share GO anno-
tations but have various expression patterns.

Table 2.7: Cross-tabulation of the original partition (O%) and the resulting partition
(C1-C4 and SG) for the yeast Galactose data set.
Cluster| O1 | O2 | O3 | O4 | Total
C1 83| 0| 0| 0| 83
C2 0|12 0| O | 12
C3 0| 1|9 1| 92
C4 0 1 0 | 13| 14
SG O/ 130 4
Total | 83| 15| 93 | 14 | 205

in C3 (YKL152Q and 1 in C4 YOR347@. The expression data of all of the 15 genes
are plotted in Figur.1Q, revealing very dierent expression patterns of the 12 genes
and the 3 genesflierentiated by our algorithm. Bot¥KL152CandYMR125Ware up-
regulated at the beginning with down regulations for alleoth The resulting cluster
C2 by partial regression is verified by GO, since the 12 gehagessimilar annotations
among the 15 genes in the original cluster O2, for examplg dne all annotated to

Glycolysis (GO:0006096) observed from the Tapl8
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Table 2.8: Over-represented terms in each original cldstahe yeast galactose data
set.

Cluster GO ID GO term p-values Gene
counts

1 G0:0006412 translation 4.37E-95 83
1 G0:0044249 cellular biosynthetic process 1.46E-64 80
1 G0:0044260 cellular macromolecule metabolic process 4.96E-52 80
1 G0:0019538 protein metabolic process 5.69E-52 80
1 G0:0008152 metabolic process 4.85E-24 83
2 G0:0006096 glycolysis 9.53E-29 12
2 G0:0019320 hexose catabolic process 1.22E-25 12
2 G0:0046164 alcohol catabolic process 2.24E-24 12
2 G0:0044275 cellular carbohydrate catabolic process | 1.02E-22 12
2 G0:0006094 gluconeogenesis 3.06E-16 8

3 G0:0043170 macromolecule metabolic process 1.53E-35 92
3 G0:0044238 primary metabolic process 3.99E-31 93
3 G0:0044237 cellular metabolic process 6.52E-28 93
3 GO0:0000398] nuclear mRNA splicing, via spliceosome | 9.31E-28 27
3 GO0:0000375| RNA splicing, via transesterification reactions 1.07E-26 27
4 G0:0008643 carbohydrate transport 2.45E-26 12
4 G0:0008645 hexose transport 4.39E-25 11
4 G0:0051234 establishment of localization 7.64E-10 13
4 G0:0015766 disaccharide transport 0.002408395 1

4 G0:0015771 trehalose transport 0.002408395 1

As an important transcription factov,PR186Cs an essential protein that binds
the 5S rRNA gene through the zinc finger domain and directsnalsly of a multi-
protein initiation complex for RNA polymerase Ill. Belomgj to the original cluster
03, YPR186Js classified as a scattered gene. We plot its expressiols gether
with two other genes that are also annotated to GO:0006388dsftription initiation
from RNA polymerase Ill promoter), and foundfidirences among their patterns in
Figure2.11 Since this term is quite specific and it should be able tocke#ayene’s
function, mechanisms behind such diverse behaviours drarstlear and are worth

further investigations.
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2.5 Conclusions

The aim of clustering gene profiles is to find possible fun@iaelationships among
thousands of genes on a microarray. As microarray techraduances, current clus-
tering methods are no longer adequate for some tasks. lonssgo some of the
recent issues, we proposed in this chapter a PMDE algoritiright clustering gene
expression data. The tightness of resulting clusters cazobt&olled by a threshold
which in a sense decides the number of clusters.

The contributions of this chapter include introducing MDiidahe idea of par-
tial modelling to gene expression research, giving consparof MDE with the most
common estimator in the literature - maximum likelihoodd gamoposing a novel par-
tial regression clustering algorithm. The proposed atborican be applied over an
existing clustering to get tighter and therefore more imfative clusters. In summary,

the proposed system benefits from
e the robustness of minimum distance estimator (MDE) to destestttered genes,
e the idea of partial modelling for obtaining tight clusters,

e the spline regression model for capturing the expressionesuat either uni-

formly or unevenly distributed time points.

In particular, we propose that while the model for data fiftehould be sensitive
enough for discriminating individuglgenes, the parameter estimator should be robust
enough against noise and possible outliers. Thereforepaueséd on the dierences
between estimators by providing experimental comparisortse robustness of the
MDE makes it stand out in our study. An immediate advantadfeatswhen applied to

gene expression clustering, it is capable of locating tlyeckenponents in an unsuper-

68
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vised manner. As a result, a set of scattered genes thathasicelations is naturally
obtained.

Although PMDE demonstrates itsfectiveness through the comparison with the
maximum likelihood method, it also has its limits such astieé ingficiency. The
aim of this chapter is not to prove which one is better, buteato provide analytical
examples, discussions and insights for further research.

During the evaluation of the clustering algorithm, we fekt although GO pro-
vide a wealth of complementary biological knowledge that heaen cumulated over
time, there is currently no best way to utilise it for clugtgrvalidation. Indices such
as the predictive accuracy abour@®[133. However, they take as input GO terms to
be used as functional categories. This is problematicedime uneven granularity and
variability of relevance in the GO structure result in th& €&rms cannot be compared
on the same level. A validity index specifically designed @ is therefore needed
in order to make precise inference. In the next chapter, wpqse a new GO validity

index designed for this purpose.
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Chapter 3

Quantitative Assessment of Clustering

Based on Gene Ontology

3.1 Introduction

As the initial step towards biological inference from mian@ay gene expression data,
clustering is crucial in reducing redundant informatiord adentifying key compo-
nents in the data, as described in Chapter 2. With the pres@lef various clustering
algorithms, it is non-trivial to select one that can beskl@athe challenges in the data
set under study. On the other hand, Gene Ontology (GO) peswvadwealth of com-
plementary biological knowledge, which, if properly exidal, can be of great help
in assessing clustering algorithms. However, varyingliegtbiological specificity of
curated information and the graph structure of GO hindentitzive access. System-
atic formulisation is therefore needed for biological dalion of clustering methods.
To this aim, we design specifically for GO a clustering vdiiola index, which

consists of two indices measuring the within-cluster fior@l compactness and the
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3.1 Introduction

between-cluster functional similarity, respectively. i bhapter is organised as fol-
lows. In this section, we give an introduction to GO and theppsal of GO-based
clustering validation, providing analytic reasoning t@gart the proposition. Section
3.2and3.3reviews research trends in GO clustering validation, bniggip prevailing
challenges. For evaluation purpose, existing GO-drivdidaaon methods are cate-
gorised into two main sets: methods that use GO terms asidmaticategories and
methods that are based on previously defined semantic sipnilaeasures. We em-
pirically prove that the methods in the second category noiya suitable in Section
3.3 Later in Sectior8.5 some methods in the first category will be compared with our
method proposed in Secti@¥.

Ideally, a validation method should be robust against theenm GO, and com-
putationally dficient enough to facilitate comparison betweefiedent clustering al-
gorithms. It should also take into account not only the sétS@ terms annotated to
the gene clusters, but also their significance to the clsistied their specificities to the
whole GO structure. Clustering validation techniques daseGO annotation should
therefore incorporate both a robust infrastructure andi@ctive representation of re-
lationships between GO terms. So far, there have been nusherorks dedicated to
statistical validation of gene expression clustering (4€gfor a good review). How-
ever, less attention has been paid to objective clustetfigation considering these
needs. Moreover, little systematic evaluation on the rolmss and fectiveness of
various GO-driven validation methods has been performed.

In this chapter, systematic evaluations, including congparof various clustering
algorithms, perturbation experiment, and test on findingnogm cluster number, are
provided in SectiorB.5 to prove the suitability of the proposed index. Evaluation

is performed based on the applications of six popular dliusgealgorithms to three
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biological data sets of diverse features, including Saccharomyces cerevisidata
sets and @#rabidopsis L. Heyntldata set. In addition, five of the existing GO-driven
and data-driven validity indices are used for comparisooviging useful insights on
the validity indices and the clustering methods. Excellggtformance is observed
for the proposed validation index throughout all experiteelVhile existing methods
tend to ignore the redundant and complex features of GO, tygoped index proves

to be useful tools for handling these features.

3.1.1 An Introduction to Gene Ontology (GO)

As one of the most important and widespread ontologies imBianatics, Gene On-
tology (GO) is a structured vocabulary intended for anmogagene products with
a consistent, controlled and structured vocabulary. Oweryears, GO has become
one of the most comprehensive man-curated collectionsodddical knowledge. For
example, 64% of yeast gene products (428275, including verified and uncharac-
terised ORFs, transposable element genes, and all RNA gedeqts, as of Oct. 2008
[23]) are annotated by one of the three GO categories, the haallogrocess.

The three GO categories in GO are biological process (BP)ecutar function
(MF) and cellular component (CC), each structured as a teideacyclic graph with
nodes representing the GO terms and directed edges refngsparent-child re-
lationships between terms. An example of such GO structurthe category BP
(G0O:0008150) can be seen in FiglBd. A directed edge indicates either the child
nodgterm is a subclass (i) or a component of the parent ngéem (partof). A term
and all its children in the hierarchy can be viewed as a foneti cluster. Therefore,

in addition to describing the relationships between tei@3,helps set up a two-way
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table, where a gene can be mapped to a set of terms and a temefleeha common

function for a set of genes.

O Over-represented terms GO 0006119, GO 0006118,
O All ancestors
GO 0016310, GO 0006091,

G0:0046999 GO 0006796
0,465 040
?GO 0006793, 0.481

G0:0009987,

’l 087

G0:0008150,

Figure 3.1: The graph structure of GO, edge weights are tebeatl in Sectior.4.1

0.623G0:0065007,

Utilising GO information in gene expression clustering basn a research focus,
both because of the rich information in GO and that it progsidemputationally ac-
cessible semantics about gene functions. Consequenthgris&n methods have been
proposed 2, 29, 88| to establish functional relationships between GO termd, far-
ther to assess relationships between gene products. thtynsome methods may be
able to assess the quality of gene clusters, based on themslaps between genes.
This is a dificult task, since GO is incomplete and sometimes erronewvas, ia the
most well-studied organismiP2. Ambiguities, uneven granularity and variability of
relevance in the GO structure also present challengesnbtarice, the depth of a GO

term in the GO graph does not always reflect its biologicalificance, because a term
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is not necessarily as biologically specific as the other seatrihe same level.

Ideally, a good clustering algorithm should produce geunstels with non-overlapping
functions. However, even a perfect partition cannot achien-overlapping GO func-
tional annotations, because of the existence of generalg@@st Such overlapping
annotations incurred by general terms, if not properly td@#h, will introduce am-
biguities in clustering validation. A clear boundary shibble drawn between over-
lapping annotations incurred by general terms and by thedéalustering algorithm
itself. An example of functional overlapping in gene clustes illustrated in Figure
3.2 where the relationships between GO terms and gene clastectearly shown. In
this example, the notion “over-represented terms” refe@G® terms that can represent
relevant functions of gene clusters, as selected on the bé#fieir specificities. In this
sense, the overlapping GO term for gene clusters C1 and C@gume3.2 is specific

enough to indicate inability of the clustering algorithm.

3.1.2 Rationales for GO-based Clustering Validation

A concern about clustering validation based on currenbigickal knowledge, is the of-
ten observed contradictions between machine learnindtsdsom experimental data
and the existing annotations. Clustering identifies groofpgenes involved in co-
regulated biological processes, or groups that encodédifunadly related proteins for
specific pathways. However, the assignment of a gene to @rcettister based on its
expression and genetic co-regulation based on currentlkdge in transcriptomics
do not necessarily coincide. Genes known to be involved iorangon pathway can
end up in completely dierent clusters, while genes withfidirent functions can be

assigned to the same cluster.
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500050596
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GO:0007020
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GO:0000225

-6

Ci
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O Over-represented terms : :
& Al ancestors G0-0008150

Figure 3.2: An example of functional overlapping in genestdus with the over-
represented terms (pink) for three gene clusters (C1, CZ2&)d There is an over-
lapping over-represented term (GO:0000278) between CTand

The reasons of the above contradictions are manifold. ,Fits to the limited
knowledge in annotation, some underlying regulations mayubknown. EXxisting
annotations, however, are skewed towards processes ofgpamerests99]. Another
reason lies in the microarray data and the clustering dlgaritself. If the clustering
algorithm is sensitive to the statistical variation andsedbound in the experimental
data, the clustering outcome is less likely to conform tofthmetional groups. Other
reasons lie mainly in the biological responses. For exapgabular processes are
affected by both up- and down- regulations and many processesrndy regulated

by post-translational modifications. Hence, it is possthit gene functions are not
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3.2 Existing Methods Assuming GO as Functional Categories

captured by the corresponding expression levels.

Consequently, contradictions between statistical legr@nd current biological
knowledge motivate researchers to explain and uncover tiderlying mechanism.
They also make the validation of clustering methods an estarg and challenging
issue. The interesting aspect is that such contradictibndan expression data and
functional annotations may ultimately suggest new astoas and pathways. Even
simple pairwise comparisons can reveal novel interactiortbe validation process
[20]. The accompanying challenge is thefaulty to design a quantitative evalua-
tion based on biological knowledge, with the existence afadation gaps. For the
purpose of gene function discovery, it is therefore prdfierao obtain clusters from
purely data-driven methods and evaluate the clusters witttieg biological knowl-
edge. This not only prevents clustering results from beiagda to current knowledge,

but also entails objective validation based on annotatsoich as GO.

3.2 Existing Methods Assuming GO as Functional
Categories

Recently, a number of functional validity indices are apglio gene clustering valida-
tion using GO terms as functional categories. These methsglane there are known
functional categories for at least a subset of genes andsashkester quality based on
the cluster assignments of these genes. Examples are tprediccuracy byThala-
muthuet al. [133, entropy-based metric89], biological homogeneity index (BHI)
and biological stability index (BSI) bipatta and Datt§30].

The measure of predictive accuracy was introduced befageation2.4.2.3 The

76



3.2 Existing Methods Assuming GO as Functional Categories

two entropy-based metric89] were proposed to measure the behavioural homogene-
ity within a cluster and the maximum separation of behaviacross clusters, by
strictly mapping genes to functional behavioural groupinee by GO terms. How-
ever, as discussed previously, these GO terms are not aetes®mparable with
regard to their biological specificities. Also, such sirfipétion of annotations, with-
out taking the GO structure into account, limits the intakenfbormation provided by
GO. In this chapter, we select BHI and BSI as representatigesand analyse their
effectiveness in the comparative experiments in Se@&ién

BHI measures how biologically homogeneous the gene chiater Intuitively, the
measure examines whether the genes placed in the samegcstiatisister also belong
to the same functional classes. Consider two annotatedsgen¢hat belong to the
same statistical clust&l, in a partitionP, P = {Ck = 1,2,...,K}. Let f(i) denote
the functional clagslasses containing gemend N, denote the number of annotated

genes in cluster§,. BHI for partition P is defined as

K
BHI(P):%;mmZ&I(f(i): £(j)), (3.1)
where the indicator functioh(f (i) = f(j)) is assigned value 1 if (i) and f(j) match
and value 0 otherwise. In the case of multiple functionasglassignments for the
same genes, any one match isfisient. If these functions haveftirent relevance,
however, the judgement by the indicator function may notrzkcative of the real
biological meaning.

BSI inspects the stability of clustering for genes with s$anbiological functions.
Each time a sampleme point is removed from the gene expression time seritsg da

and the cluster membership for genes with similar funclianaotation is compared
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3.2 Existing Methods Assuming GO as Functional Categories

with the cluster membership using all available sampleg. @€ denote the cluster
containing genein the clustering based on the reduced expression profiteowithe

xth sample, an€'° be the cluster containing genasing the full expression profile,

1g¢ N(C'0 n C¥)
BS(P) = EKZ N _1) Z > —N@T (3.2)

x=1 i#jefi

whereF is the total number of functional classesthe number of samplgsne points,
andN(-) denote size or cardinality. This measure is based on tle¢ tleait a stable clus-
tering algorithm would produce similar answers, as judgetblically, based on the
full and the reduced data. Thus, the clusters using full addeed data containing two
functionally similar genes should have substantial oyerl&ince the index examines
whether the cluster membership for genes with similar fioneil annotation remain
the same when a sample is removed, accuracy of this indexargsly depend on the
quality of data.

Values for both of BHI and BSI are bounded by 10, with larger scores of BHI
corresponding to more biologically homogeneous clustansg, larger scores of BSI
corresponding to more stable clusters of the functionalhyoéated genes, respectively.
Since there is no concept of depth for GO, it ifidult to find GO terms that have the
same biological specification and relevance. To apply badites to GO validation, a
threshold is used to select biologically specific GO termiiastional classes. Con-
sequently, all selected terms are treated on the same llevilct, if such functional
categories are known even only for a subset of genes, onelwaysaassign the rest
of the genes to one category and then the widely-used Adjigaad Index §4] can
be utilised for assessing the performance of clusteringralgns. However, when GO

categories with uneven level of biological relevance ardysuch assessments are

78
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not conducted on the fair ground. To prove this point, we wolinpare our proposed

validation measure with BHI and BSI in Secti8rb.

3.3 Existing Methods Based on GO Semantic Similarity

3.3.1 GO Semantic Similarity

Currently, the majority of GO-driven clustering validitydices heavily relies on se-
mantic similarity measures for GO terms (term-term sintyu 69, 85, 109. Based

on these measures, pairwise relationships of gene prodaistbe set up by mapping
GO terms to genes and thereby enable distances among gstersho be mapped

out. Next, we briefly review some of these techniques in aahofical style.

Term-term similarity

Semantic similarity measures for GO terms often take intmant the information
content of GO terms1j09 and GO's graph structure. Information content is a useful
criterion indicating the usage frequency of a term. The mggion is that the less fre-
quently a term occurs, the more informative it is since it @renspecific. Although
this assumption is not always tru@d, information content serves as a practical guid-
ance to the specificity of a term if no other information isiklde. One of the most
popular term-term similarity measure, Resnik’'s measi@s][is defined as the infor-
mation content of the lowest common ancestor of the two teRFoBowing, a number
of measures were proposed as improved versions of Resnédsume. For instance,
Lin’s similarity measure85] and Jiang and Conrath’s distance meas6 fake into

account the information content of both two terms and thmirelst common ancestor,
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but differ in the way of normalisation. Relevance similarifylf] was proposed as
Lin’s measure with weight assignments, signifying a favfmurbiologically relevant

terms in the comparisons.

Gene-gene similarity

Based on the above term-term similarities, a most commorsunedor the similarity
between two gene products, each mapped to a set of GO termferscalculated
as the average or maximum pairwise similarities betweeiwthesets of termsi44.
Other methods have been proposed. FuSSiMeg enriched titargy by Coutoet al.

[26] takes the maximum term-term semantic similarity measunes the correspond-
ing information content for both terms, in order to take iatount the significance
of a term. FunSim scorelLl5 makes use of a similarity matrix whose elements are
the pairwise similarities between terms. The score is tasthe average over the
row maxima or column maxima, whichever is higher. The finakreds computed by

averaging scores based on ontology MF and BP, respectively.

Cluster-cluster similarity

With the availability of gene-gene similarity, clusteuster similarity can be defined
to assess clustering quality. This is traditionally achewith existing data-driven
validation indices by simply replacing the similarity maes with one of the above
gene-gene similarity measureks] 125. For example, Bolshakovet al. [15] used
C-index and Goodman-Kruska index with Wu and Palmer’s séimameasure 103

and Resnik’s measure for clustering validation and optichadter number selection.
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3.3.2 Problems of Methods in this Category

To assess semantic similarity measures for term-termaakdtip, many studies quan-
titatively correlate the semantic similarity measureshwiarious genomic features
[14, 57, 90]. Established approaches use genomic features such asneegexpres-
sion and interactions to define gene-gene similarity. Thseimption is that a good
agreement between such similarity and gene-gene semantlargy may suggest a
good semantic measure.

Another assumption is that highly similar sequences shioeilkdighly semantically
similar. Lordet. al[90] were among the first to compare Resnik, Lin’s, Jiang and Con-
rath’s measures by correlating the average semantic sityilaith protein sequence
similarity using BLAST's [L] bits score. Although none of the three measures has
clear advantage over the others, Resnik’s measure shoWwsdtigorrelation between
sequence similarity and semantic similarity based on MFRarother study demon-
strated in 7], protein-protein interaction databases were used foasessment of
various semantic similarity measures. Five measures wargared: three content-
based measures, Resnik’s, Lin’s, and Jiang and Conratiusya graph-based meth-
ods - the union-intersection and the longest-shared-Fdé .union-intersection is the
ratio of the number of shared nodes in two induced graphsstagimber of all unique
nodes, while the longest-shared-path is the length of thgdst shared path. However,
the union-intersection and the longest-shared-path omhgider partial information
about the structure of GO graph. Therefore, it is not suigithat Resnik’s measure
is the best performer when all measures were assessed usimnhprotein-protein
interaction data and pathway analysis.

Although Resnik’s measure benefits from its simplicity antpberforms others in
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many studiesd, 14, 57, 90|, none of the semantic similarity measures stands out as
having a clear advantage. Besides, the results suggeshéhtiree dierent aspects
of GO are only weakly correlate@[90].

Existing GO validity indices 2, 90] transform term-term similarities into gene-
gene similarities and furthermore into cluster-clustenikdrities. The two-stage trans-
formation unavoidably results in information loss. In thegess, gene-gene similari-
ties are often calculated based on the assumption that grage/or maximum value
of term-term similarity can be used to represent gene-gemé&asity. This is problem-
atic, since one cannot expect the average or maximum valbe tepresentative for
the whole population. On the other hand, such GO validityceslare often not robust
enough against uneven granularity and noises in GO. Beadiise noisy and incom-
plete aspects of GO, semantic similarity is bound to be naewych in turn worsens
the quality of gene-gene similarity.

Another big concern about this type of method is that the $ensed to represent
gene functions cannot be compared on the same level. To tadvproblem, Barriot
et al. [6] proposed a mathematical metric for finding the most pentiterms in gene
clusters to represent their functions. However, whetherpirtinent terms from two
sets of genes can be compared on the same level remainsruridieanwhile, none
of the assessments performs any test about the fithess & se@santic similarity
measures. As it was noted i8(], the ability of the above validation techniques to
rank clustering algorithms in terms of their feasibilitis®iological prediction remains

debatable.
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3.3.3 Experimental Assessment

We assess existing validation methods based on GO semantiiargy by a simple
standard: their abilities to fierentiate between random and meaningful partitions.
The term-term similarity are calculated using three measuResnik’s, Lin’s, Jiang
and Conrath’s measure. Gene-gene similarity are compuwseldoon average term-
term similarity. Three existing cluster validity indic&dihouette index111], Davies-
Bouldin index B3] and the Dunn index41], are used to evaluate partitions based on

semantic similarity 125.

3.3.3.1 Clustering validation indices

Silhouette index
Given a set of genefli = 1,2,...,n} and a partition of° = {Cj|j = 1,2,...,K},
Silhouette index is defined as follows. For each ggnef clusterC;, a confidence

measure, the silhouette widdy;), is defined as

s(g) = min(dB(g)) — dW(g;)

~ maxdW(g). min(dB(g))}’ (3-3)

wheredW(g;) is the average distance fragnto all other genes in clustél; anddB(g;)
is the average distance betwegrand all genes in other cluste@, k # j. Gene
assignments with a larg#€g;) (almost 1) are very well clustered, a sms(l};) (around
0) means that the gene lies between two clusters, and assigsmith a negative(g;)
are probably placed in the wrong cluster. Thus, the ovetallity of a partitionP can

be measured using

SP)= =" (@) 3.4)
i=1
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Davies-Bouldin index
The Davies-Bouldin index aims to identify sets of clustérattare compact and well

separated. It is defined as

j=Li#]

K K C C
DB(P) :le Z max{%’éj()’)}, (3.5)

whereA(C;) and A(C;) represent the inner cluster distance of clu§ieandC; and
6(Ci, C)) denotes the distance between the clusteendC;. UsuallyA(C;) are calcu-
lated as the sum of the distances of individual genes to gentive cluster centres,
ando(C;, Cj) as the sum of distances between two cluster centres.

Dunn index

The Dunn index is defined as the ratio of the smallest disthrt@een observations
not in the same cluster to the largest intra-cluster digtattcaims to maximise inter-
cluster distance and minimise intra-cluster distances Tidex is to identify clusters
that are compact and well separated, defined as

D(P) = min{ min {M}} (3.6)

1<i<K |1gj<K;j# | maXq<k A(C)

with A(C;) and A(C;) having the same meaning as they have in the Davies-Bouldin
index.
3.3.3.2 Experiment

In this experiment, the semantic similarities for ternatesimilarities are computed
separately on three GO ontologies, BP, MF, and CC. Theiegesrare used as gene-

gene similarities and as input (distance measurementd)etahree cluster validity
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indices, Silhouette index, Davies-Bouldin index and Dumgeix.
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Figure 3.3: Experiments on discriminating random pantiidyellow curves) from
meaningful partitions (non-yellow curves) with semanimitarity based on the Sil-
houette index. For each of the GO category, three semamtigasity measures,
Resnik’s (R), Lin’s (L), Jiang and Conrath’s (JC) measure,sed.

For Davies-Bouldin index and Dunn index, there is a choicénikfage methods
when computing the inter-cluster distances and intratetulistances. For inter-cluster
distance there are choices of complete and average linkagefor intra-cluster dis-
tance there are choices of complete, average and Hdtikdkage 66]. In total, there
are six linkage combinations for the computation of both iBsaBouldin index and
Dunn index. First, six clustering methods, including PMS proposed in Section
2.3), SplineCluster (as described in Secti®2.3, MCLUST (as described in Sec-
tion 2.2.4), Hierarchical cluster, K-means clustering and PartingrAround Medoids
(PAM), are applied to the yeast Y5 data set as described iticBez.4.2 Then the
three validity indices, Silhouette index, Davies-Bouldndex and Dunn index, are
applied on the six resulting partitions and 10 random panst.

The results from silhouette index are plotted in Fig8r& The results based on

six linkage methods for Davies-Bouldin index and Dunn index plotted in Figure
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Figure 3.4: Experiments on discriminating random pantgidyellow curves) from
meaningful partitions (non-yellow curves) with semantimitarity based on the
Davies-Bouldin index. Colour codes are provided in the teg@ Figure3.3.

3.4 and 3.5, respectively. While the green box corresponds to the gekaethod
for inter-cluster distance computation and the orange lboxrtra-cluster distance
computation. Curves are colour coded for the identitiedustering methods which
remain the same in all experiments, with the legend in FiguBe In essence, the
objective of this experiment is to see if the random pargidyellow curves) can be
differentiated from other valid partitions (non-yellow curybyg the validity indices.
From Figure3.3 3.4and3.5, it is clear that although occasionally the indices pick up
perhaps exceptional partitions, none of them cdfeintiate the random patrtitions,
based on all three semantic similarity measures. Henceiligy of the existing GO-
driven validation techniques to rank clustering algorighimased on semantic similarity

remains unclear.
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3.4 Proposed Validation Method
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Figure 3.5: Experiments on discriminating random pantiidyellow curves) from
meaningful partitions (non-yellow curves) with semantioiarity based on the Dunn
index. Colour codes are provided in the legend in Figug

3.4 Proposed Validation Method

Although the afore-mentioned three GO-driven indices arteaile to provide fec-

tive solution for clustering validation, GO possessesulsaformation worth tapping.

In this section we introduce a clustering validity indexhwitvo sub-indices: within-

cluster compactness (WCC) and between-cluster simil@BiB5), upon the establish-

ment of a new distance measure between GO terms. Befordwioatnportant statis-

tics to be used in the proposed indgxyalue and information content, are reviewed.
For each cluste€y, ke{l, 2, ..., K} in aK-cluster partition, the hypergeometric dis-

tribution [131] can be used to identify over-represented GO tefas{tli = 1,2, ..., L}

in one of the three GO categories, wltithe total number of over-represented terms.

Their corresponding-values{pili = 1,2, ..., L} are calculated as EQ.27). The lower
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3.4 Proposed Validation Method

the p-value is, the more unlikely is the null hypothesis that anteppears by chance
hence the more significant a term is. The set of over-repteddbO termsl are of
interest since they represent the most common functionsglg genes within cluster
Cx. Following, an induced GO relationship gra@h for clusterCy can be constructed
using Ty as leaves, linking to all their ancestors until one of thed¢hroot ontology
terms (BP, MF, and CC) is reached. Since an induced GO grapbeabtained us-
ing a certain number of over-represented GO terms from elaisttec, K clusters can
then be mapped t& induced GO graphs. GO graphs thus provide straightforward
representation of the functional groups within a set of gene

Another important notion is information content (IC). U€X(-) denotes the infor-
mation content of a term. Whilp-value measures the biological relevance of a term
to a specific gene cluster, information content can inditla¢especificity of a term
regarding the whole population. Although it has been pdimet that not all of the
less frequent terms are informati@9], this criterion can serve as a general guideline
if no prior information is available. Nonetheless, usersudti use evidence codes of
their choices when computing information content. Therimfation content of a term
t is defined as the negative logarithm of the probability ofesbmg the term or its

offsprings in one of the GO categories, i.e.,

IC(t) = — In(freq(t)/ freg(root)), (3.7)

freq(t) = annolt) + Z freg(children(t)), (3.8)

whereanno(t) is the number of genes annotated with tegnchildren(t) is the set

of all children terms ot. Therefore, information content has a minimum value of O
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for the root term and a maximum value 6lin(1/0) = In(O), whereO is the sum of

occurrences of all terms in this GO category.

3.4.1 GO-based Term-Term Distance

Since GO is a directed acyclic graph, uneven granularitylaolbgical relevance of
certain terms need to be considered when evaluating thendistbetween two distinct
GO terms. Biological relevance of certain terms for a speaét of genes can be
measured using thp-value while information content indicates biological sifieity
of a term. To overcome the limitations discussed in SecBdnevaluation can take
the GO structure, the height of the graph and the number othes into account. To
this aim, graph theory will be useful in constructing a mathécal GO measure.

First of all, to provide a functional distance measure betw&rms, we propose a
graph-based strategy. A well-defined mathematical mea$teem-term distance is of
crucial importance. It enables predictions of relatiopstbhetween gene clusters that
would have been impossible if the GO structures could onlgdmepared empirically.
Of the many paths existing between two terms, the shortéistspét;, t;) between two
terms,t; andt;, is defined as the path through which the two terms first reattaeed
parent, the lowest common ancestor (lowest common angesyt, t;) is computed
with Dijkstra’s algorithm B7]. Since GO is a directed acyclic graph, uneven granular-
ity and biological relevance of certain terms should be m#red when evaluating the
distance between two distinct GO terms. For example, ththddis O reflects mostly
the rank in categorisation rather than the intrinsic progerof terms. Therefore, in-
stead of treating all edges on the same scale, we assign &igietsvto all edges along

the path. The idea is that the distance from a term to a mofgpehild term should
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be larger than it is to a more general child term. This resnlthe definition of edge

weight between two ternts, t;
Wep = 1 - 1C(tp)/1C(Le), (3.9)

wheret; is the parent of; in a GO graph. Since the information content of a parent
term is no higher than that of a child term, edge weights ddfim&q.(3.9) are bounded
in [0,1]. In the case of a parent term and a child term having the safoenation
content value, the edge weight is 0. Wtigrs a root term, the edge weight is 1. In this
sense, the edge weight reflects thatence between a parent term and a child term
in the sense of biological specificity. For terms that shheesame parent, the more
specific a child term is, the higher its information contemtthus the larger the edge
weight is.

Given a graph structure of GO as described above, we now défnerm-term
distanced;; betweent;, t; andd; betweent; and the root term, withx, y denoting the

nodes along the shortest path, as:

d; = edgdxy)esplti.tj) (3.10)

1, t =tj,

d = 1+ Z Wy, (3.11)
edgéx,y)espti,root)

with sp(t;, t;) the shortest path between two terrhsandt;. The latter case ad; is
more likely to happen in the situation when the same termgeesented in two gene
clusters, for which assigning a constant value 1 to this bafjgs introduce a penalty,

as shown later in Sectid®4.3 In summary, this functional distance measure reflects

90



3.4 Proposed Validation Method

the relevance details of all terms along the path and thehngstapcture of the induced

GO graph.

3.4.2 Within-Cluster Compactness

Intuitively, a functionally compact GO graph for a gene ttuds characterised as a
deep and narrow graph without wide spreading subgraphs @re@h indicates speci-
ficity in over-represented gene functions, while subgrampsesent dierent func-
tional groups. This can be computationally described assaltref long distances
between over-represented GO terms and root term, and sktahces between the
over-represented terms. For example, in Figi& the two big subgraphs with terms
‘G0:0009987’ and ‘G0O:0008152’ at top represent two maircfional groups in this
gene cluster. This should result in low score in functiomehpactness.

We propose Functional Compactness (FC) to describe thedégeempactness of
the functional cluster as described above, and an indexjimEluster Compactness
(WCC), to combine FC for all clusters in order to summarisedtierall compactness
of a partition. A large value dfC indicates a functionally compact cluster.

Given ap-value cut-@f p, GO termd;, t; with correspondingp-valuesp;, p; lower
thanp are selected. Meanwhile, the measure should be normabisteetsizes of
clusters and indicate the significance of a term regardiitg fpvalue. FC for a cluster

Cy is defined as

> di- (logpiy?
FC,(CJ) = beTk . (3.12)
Z dij - log p; - log p;
tieTk tjeTk, j#i

Summing up the distances between over-represented terthe toot term, the nu-

merator in FC formula credits deep and narrow graph. The meraior suppresses
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cluster with loosely related terms, since the longer théadises between terms are,
the less functional compact a cluster is. In other words, ECadirages subgraphs by
involving long distances between terms in two subgraphgalNy, if a cluster is not
significantly enriched, e.qg., for a certgirvalue cut-df p it has less GO terms that will
contribute to FC, such a cluster also scores lower. Com@iR(D of all cluster$y in

a partitionP, WCC can be defined as

Sk, In|Cyl - FC,(Cyk)
Z|l<(:1 |n |Ck|

WCG,(P) = (3.13)

where InCy| is the natural logarithm of the size of clustey and ZkK:1 In|Cy| serves
as a normalising factor. The purpose of involvingQg is to remove the féect from
the cluster size WCGC, serves as a measure for a clustering outcome in terms of its

compactness in functional representation.

3.4.3 Between-Cluster Similarity

The idea behind the proposed Between-Cluster Similaritias the overlapping de-
gree between two graphs can indicate their functional aityl To computationally
depict the overlapping degree between two clusters, weeal&fimctional Similarity
(FS) as an indication of similaritglisimilarity (overlagseparation) in terms of biolog-
ical functions. We also define Between-Cluster SimilaBZE) which combines the
FS scores for all clusters in order to indicate the overagdhsation among clusters. A
large value ofS indicates a higher level of similarity, since the overlapazen two
sets of GO terms are more significant. This leads to the fagsation of FS as follows.
For a patrtitionC, K induced GO graph& = {G, ..., Gk} are constructed frorK

sets of over-represented teris= {T4, ..., T} from the cluster€ = {C, ..., Ck}. The
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FS between every two clustetg, C, is:

D, (G- (logp)*+ )’ di(Gy) - logp))?

tieGy tjeGy

> > dij(GcUGy)-logpi - logp,

tieGy tjeGy

FS,(Cx.C,) = (3.14)

di(Gx) has the same physical meaningdasn Eq.@3.10, with G4 in the brackets in-
dicating the GO graph identity. The numerator of Bdlé) represents the sum of the
sizes of two graphs by summing up the distances betweenrths tand the root term.
The denominator describes the overlap between two furatidasters with the sum
of distances between terms in the joint gra@q ¢ Gy). The bigger the overlap in the
two functional clusters is, the smaller the distances betwerms are in the denomi-
nator, hence the higher value of FS. As a summary, for theatiygartition, BCS can
identify functionally well separated clusters with the défon:

> .InICd - INICl- FS,(Cy, Cy)

XYy

BCS,(P) = (3.15)

2, IniCd-Inicy

Xy

As the name indicates, the smaller this index is, the clasteare less commonality in

gene functions, and therefore the better the corresponpdirtgion is.

3.4.4 Combined Index WB

Based on the user-selected GO categatgegories, a clustering algorithm’s validity
measure WB can be calculated by poolinffetientp-value cut-dfs p. For more than
one GO category, the formula of WB takes an additive form secséed GO categories

can be linearly combined. For example, if all three GO categqBP, MF and CC)
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are chosen, WB is calculated according to the following faam

D (WCG,wr(P)? + WCG, p(P)? + WCG, cc(P)?)

Yp

WB(P) = . . —.
> (BCS,ur(P)? + BCS, p(P)? + BCS, cc(P)?)
Yp

(3.16)

The reason of using a square form is to stress any strongoregatp in the GO cat-
egories. WB provides a single quantitative measure toifaisl easy comparison of
different partitions. The larger WB measure is, the better atiparts since the clus-

ters are compact and well separated.

3.4.5 Confidence Thresholds

In order to draw a statistical conclusion, it is crucial tdese representative-value
cut-ofs so that performance can be evaluated on a significance Bagistment ofp-
values for multiplicity is performed using the notion ofdaldiscovery rate (FDRY].
FDR suggests a flerent point of view when considering testing errors, by cahihg
the expected proportion of erroneous rejection of the nypltheses

E[|False Positivag(|False Positivds+ [True Positivel§]. For a given threshold, the
Benjamini Hochberg procedure states thapiifp,, ..., pm are the observeg-values,
one can find the large$t so thatb = maxi|p; < ia/m} and reject null hypotheses

HY, HY, ..., HD. After adjustmentp-values can be compared directly with any chosen

significance levetr.
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3.5 Experimental Results

Consistency, accuracy and discriminability are the matinbates of the validity in-
dices to be accessed in this experimental section. To tis\wae design three com-
parative experiments, allowing the proposed WB index todsessed in many aspects.
Biological data sets with distinct features and various plexities are used. Five
other validity indices, including two GO-driven and thresatdriven indices, are used
to compare with the proposed index. Six popular clusteriggrithms are selected to
represent the wide spectrum of clustering methods.

The three data sets used in the experiments are: yeast cildl(Mb) data set (as
described in Sectio2.4.9, yeast galactose data set (as described in Se2ti®d),
and Arabidopsis L. Heyntldiurnal data set. The yeast Y5 data set is popular in the
clustering literature for its easy accessibility. The &rayes from this data set are
posed partly by the ambiguities among the five cell cycle ehasd partly by the poor
guality of the data set. Compared with Y5 data set, Yeastyzda data set show more

distinguishable expression patterns. Its genes reflectimaetional categories in GO.

ArabidopsisL. Heynth diurnal data set

The Arabidopsis L. Heyntldiurnal data set124] is collected from an experiment to
investigate the impact of the diurnal cycle of the starchabelism in the leaves of
Arabidopsis L. Heynthlt is a larger data set with 800 genes but with only 11 time
points and two replicates. For the assessment of our validatheme, a subset of 800
genes is used which is previously selected using the pertgdest [L147]. All data
sets in the experiments are filtered. Because of noise antdirannotation knowl-

edge, involving a whole data set prevents us from intenpgetie performance of the
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Figure 3.6: TheArabidopsis L. Heynthdiurnal data clustered into eight clusters by
K-means clustering.
proposed methods under evaluation. By using filtered désatbe interference of un-
known factors is significantly reduced, which provides ae picture about the role
the methods play. Figurg.6 shows the time series with one replicate concatenated
with the other. Ambiguities, especially in the fifth clustedicates dificulty in this
data set in terms of clustering.

In addition to the proposed index, two GO-driven indicesused for comparison:
the biological homogeneity index (BHI) and biological stéyp index (BSI). On the
other hand, the three data-driven indices, namely the €laland Harabasz (CH) index
[21], the Davies-Bouldin index and the Dunn index (as descrinegection3.3.3.),
can be employed to judge the clustering quality from the etspledata without taking

GO into account. The idea behind the CH index is to compute#ievise sum of
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squared distances between clusters using microarray aladacompare that to the
internal sum of squared distances for each cluster.

For both the CH index and the Dunn index, a large score carretspto a good par-
tition. However, for the Davies-Bouldin index, a set of canpclusters is associated
with a small value. In the following experiments, the scoséshe Davies-Bouldin
index are inverted so that large scores correspond to gatitignes for all the indices.

We design three experiments to assess the performancemijhesed GO valida-
tion indices from diferent aspects. In the first experiment, six clustering élyois are
evaluated in their applications to the yeast Y5 data setlamétabidopsis diurnal data
set with the six validity indices. In the second experimar,use yeast galactose data
set and its cluster assignment to the four functional categin a perturbation test to
assess the sensitivity and consistency of the proposedatialn index with diferent
levels of random errors. The last experiment tests the acguwf the proposed index

by finding the optimum number of clusters for the yeast Y5 data

3.5.1 Evaluation of Six Clustering Algorithms

We select three model-based and three heuristic clustengtyods to be evaluated
by the validity indices. PMDE clustering algorithm as irduzed in Sectior?.3 is

a tight clustering algorithm with the capability of detagfioutlieyscattered genes.
SplineCluster 3] is an dficient hierarchical clustering program based on a spline
model with a marginal likelihood criterion. MCLUSR4] is a widely-used model-
based method which selects Gaussian models from a pre-diesk#tend fits them to
the data. They are compared with hierarchical clusterinoghete linkage), K-means

clustering and Partitioning Around Medoids (PAMj7]. Since both K-means and
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PAM are sensitive to initial values, 10 random initialisais are given to both methods
and the optimum results are selected by the CH measure.

The ultimate aim of this section is to assess the validityoesl The experiments
only show the clustering algorithms’ performance in certases, with fixed numbers
of clusters. Since a clustering algorithm needs to be suratil from various angles,
the experiments here cannot serve as an overall evaludti@rtlastering algorithm.
Once a validity index is established as useful, it can thendsel to assess clustering
algorithm in a more comprehensive setting.

The evaluation of validity indices through the comparagxperiment is based on
two criteria. First, biological validity index evaluateset ability of a clustering al-
gorithm to produce biologically meaningful clusters. Téfere, a good index should
differentiate meaningful partitions from random ones. For eddhe data sets, six
partitions from the clustering algorithms as well as terd@an partitions are generated
for comparison. Second, when a GO-driven index agrees \ait&-driven indices or
a majority of indices, it is likely that the judgment for ttpsrtition is correct, since it
is based on both experimental observations and existingdiaal knowledge. Hence
the corresponding GO-driven index performs accuratelynséquently, good agree-
ment with data-driven indices can serves as positive eceléor GO-driven indices.
However, when such connection cannot be found, the pansitivay be inspected for
their soundness so that validity indices can be assessed.

Since the performance of a clustering method can vary witbréint data structure
and characteristics, experiments are carried out on twaskds of distinct nature, the

yeast Y5 data set and the Arabidopsis data set.
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3.5.1.1 Experiments on yeast Y5 data

The procedure of clustering Y5 data set by various algomsthas been described be-
fore (Section2.4.2.). However, we use a simpler clustering procedure but wi¢h th
addition of random partitions, since the focus is on vajithtdex instead of clustering
algorithms themselves. For the yeast Y5 data set, five isteeleas the number of
clusters for all algorithms to represent a simple integdreh of this data set. Six par-
titions from the clustering algorithms as well as ten rang@mtitions are generated for
comparison. Biological validity index evaluates the apitif a clustering algorithm to
produce biologically meaningful clusters. Therefore,hsan index should dlierenti-
ate biological meaningful clusters from random ones. Wepamthe validity scores
for six indices for each of the 16 partitions. The three bydal indices are based on

the GO ontology BP.

Table 3.1: Confidence levela)and corresponding p-value cuff® (o) in the PMDE
partition for the Y5 data set.

a | 0.0025 0.005 0.0075 0.01 0.0125
0.000079| 0.000197| 0.000356| 0.000469( 0.000774
0.015 0.0175 0.02 0.0225 0.025
0.000996| 0.001226| 0.001639| 0.001912( 0.002285
0.0275 0.03 0.0325 0.035 0.0375
0.002598| 0.002996| 0.003434| 0.003738| 0.004005
0.04 0.0425 0.045 0.0475 0.05
0.004371| 0.004742| 0.005746| 0.006238| 0.006881

T RID LRI !R|D

Before the final WB index defined in EQ.QL6 is compared to other validity index,
we first observe the behaviours of individual WCC (Bdl@) and BCS (Eq3.19)
indices to achieve better understanding of the proposddesd Selected confidence
levels and correspondingrvalues cut-és for the proposed WB index are provided

in Table3.1 Plots of WCC and BCS scores across these fistfor each of the
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three GO categories are provided in Fig@®& From Figure3.7, we can observe
the fairly consistent performance of the proposed indicgess diferent cut-&'s p.

But incorporating dierentp into the index is still necessary to provide robust results.
Also, users are allowed to define their own selection cateaf the p-value cut-df p
according to their needs, applications, and the organistenstudy.

Following, validity scores for six partitions and the avggacore for the 10 random
partitions are illustrated in Figur@8. On average, scores for PMDE, SplineCluster,
MCLUST, Hierarchical, K-means and PAM are 0.93, 0.84, 0®86, 0.75, 0.83, re-
spectively. At first glance, PMDE and MCLUST are the bestqrenker for most of the
indices, especially in terms of the WB, BSI and Dunn indicBEsey have the highest
average scores. Hierarchical clustering, SplineClustdrRAM also perform reason-
ably well as judged by most of the indices except the Dunnxindiae values from the
indices reflect the fact that model-based clustering metlaoe preferable to heuristic
clustering methods such as K-means and hierarchical dingti®r this data set. This
is reasonable. For the model-based clustering algoritW)E and MCLUST are
specifically designed for gene expression time series.rdustanding performance
coincides with established theo§Z). Surprisingly, SplineCluster, also a model-based
technique, failed to achieve similar result. Both PMDE amptirfeCluster use linear
spline model with nonlinear basis functions for data fittibgvertheless, PMDE and
MCLUST fit one model to each cluster, while SplineClusterdit® model to one time
series individually. The approach SplineCluster adopteg lead to overfitting, espe-
cially when the time series is short as it is in the case ofdhta set. On the other hand,
PAM demonstrates outstanding quality as a standard teeenajthough the number
of clusters is required aspriori knowledge.

Besides these useful insights about the clustering metheesalso gain better
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understanding about the validity indices under study.tirall, most indices have the
ability to distinguish the random partitions from meanungdartitions. However, BHI
scores for K-means and one of the random patrtitions are althesame, revealing
its deficiency in discriminability. Moreover, BHI scoresasften diferent from other
indices. With respect to this index, the best performerSatameCluster and PAM. On
the other hand, the other two GO-driven indices, WB and B@®lcapable of detecting
random partitions. They are also more consistent with tkee-daven indices, although
WB tends to penalise heuristic methods more. At this padiig,still difficult to decide

which of WB and BSI outperforms the other.
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Figure 3.7: For the Yeast Y5 data set, plots of (a),(b),(c)@\&Cores and (d), (e), (f)
BCS scores for six clustering algorithms and the averagerofandom runs based on
the three GO categories BP, MF and CC, respectively.
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Figure 3.8: For the yeast Y5 data set, normalised scoresxofadidity indices for
various clustering algorithms and random partitions. Toleddines denote that the
indices are GO-driven, while the dashed lines denote datardindices.

3.5.1.2 Experiments on Arabidopsis diurnal data

The Arabidopsis diurnal data set is made up of two experimeRiach experiment
consists of measurements at 11 time points of uneven tineevads to capture the
periods immediately after the transitions from dark (ligtat light (dark). Samples
were firstly taken at the end of light period, then at 1, 2, 4r8] 12h of darkness and
at 1, 2, 4, 8, and 12h of light. For the assessment of our #ilacheme, we choose
a subset of 800 genes previously selected using the patiotést [L47]. This subset
of data was first studied by Rhein and Strimmer for networkriefce 102].

Consider the sparsity of annotations in Arabidopsis, tlugtdangth of time series
and the noise in the data, this data set represents a casghef lwomplexity in our
study. Determination of cluster number in this case is mampulicated. There is
no specific gene selection criterion for choosing the clustenber, unlike the Yeast
Y5 data set. Moreover, the number should be selected nddtharvalidity index nor

by a clustering method to avoid bias. While the optimal @ustumber selected by
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Table 3.2: Confidence levele)and corresponding p-value cuf® (o) in the PMDE
partition for the Arabidopsis data set

[0

0.005

0.01

0.015

8.3e-05

1.0e-03

5.0e-03

0.02

0.025

0.03

TR

8.3e-03

1.0e-02

1.5e-02

MCLUST is 2, PMDE reports 13 as the optimum. Taking all thege account, we
decide on 8 as the cluster number, so that the outcomes olustering algorithms is
interpretable for the purpose of evaluating of validityioes.

Next, we obtain partitions using the six clustering aldgoris. MCLUST often
falls in local minimum, yielding singleton clusters. We el the best result with
8 clusters generated fromftérent initialisations. By setting the parameters, PMDE
and SplineCluster can also find partitions with 8 clusterst. tRe biological validity
indices, we choose one GO category ‘biological processtligstering validation ac-
cording to the purpose of this microarray experiment. Setkconfidence levels and
correspondingp-values cut-€s for the WB index in the PMDE partition are provided
in Table3.2 As can be seen from the table, for a bigger data set such Asah&lopsis
data set, less significant leveiscan be used to reduce the computation cost.

For all validity indices, the scores across the six clustgalgorithms are plotted
as curves in Figurd.9. The result appears to befi@irent from the previous experiment
for the yeast Y5 data set (c.f. FiguBe8). As can be seen, hierarchical clustering is
judged as the best performer in terms of BHI, DB and Dunn ieslievhile with re-
spect to WB and BSI K-means clustering is the best. On ther ¢thied, MCLUST
receives lowest scores from almost all indices expect BHI¢civgives its lowest score
to SplineCluster. Interestingly, the situation seems todmapletely reversed from the

previous data set. All indices indicate that better perfensrare heuristic or ‘simpler’
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Figure 3.9: For the Arabidopsis diurnal data set, normdliseores of six validity
indices for various clustering algorithms. Colour codedigating the validity index
identities are the same as they are in Figaig&
clustering methods instead of model-based methods whiohindde the evaluation
for the yeast Y5 data set. This is presumably due to the fattttie parameters of
model-based methods have not been carefully adjusted. giengrally known that
model-based clustering algorithms enjoy full probaktishodeling and higher level
of robustness. However, in some cases they may fail in peadiie to the sensitivity
to the model assumption or local optimums. The short lenftinge series in this
case and the large number of variables involved makes itcpéatly challenging for
model-based methods. Besides, model-based methods e#enspecial care in im-
plementation to avoid issues such as singularity and lgeinmm. Their sensitivity
to parameter settings such as the cluster number also nbeda&en into account.
As far as the validity indices are concerned, there are lessactions we can es-
tablish between the GO-driven indices and the data-drivdices than there are in the
case of Y5 data set. Intuitively, good agreement with dateed indices can serves
as evidence supporting GO-driven indices, if the data setelé-annotated. How-

ever, for the Arabidopsis data set this may not be the casee sinnotations are far
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more sparse and less reliable. Notably, contradiction éetmGO-driven validation
and data-driven validation may partly originate from thesgahature of GO. How-
ever, noise in microarray data itself is another sourcerirefor data-driven indices.
Therefore, consistent high scores of GO-driven indicesfdustering algorithm may
suggest its superior ability in handling noise in the data.

For the GO-driven indices, scores of WB and BSI have more mroon while
BHI scores are again veryftierent. However, the best performers judged by BHI are
K-means and PMDE, while the scores of WB indicate that onlgn&ans is the best
performer. Hence, we inspect the resulting partitions hy&ns and PMDE for their
biological meanings. Over-represented terms in the K-mebusters and in the PMDE
clusters, together with their information content gndalues, are extracted and listed
in Table3.3and3.4, respectively. From the enriched clusters in the K-mearntsioa,
specific GO terms of related biological process (starch boditem) are found. For
instance, the clusters are enriched with photosynthedis pavalue 4.9E-6), circadian
rhythm (7.7E-4), starch metabolic process (1.1E-5), isopid biosynthetic process
(1.5E-4).

In contrast, for the PMDE patrtition, the over-representnt are less specific
and the correspondingrvalues are higher, indicating lower significance. For thero
represented terms in the PMDE cluster, average informatatent is 6.9 and average
p-value is 9E-3, while for the K-means partition, averageiinfation contentis 7.1 and
averagep-value is 6E-3. Successfully, the proposed WB index captiinie diterence,
since it takes into account the specificity of GO terms. Oldtas investigation not
only reveals useful insights into the data set and the dingtalgorithms, but also

provides evidence of the superior performance of the peg¥gB index.
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Table 3.3: Over-represented GO terms in the K-means marfitir the Arabidopsis data set

Cluster GOID GO term p-values Gene IC
counts
1 G0:0008610 lipid biosynthetic process 3.94E-05| 10 6.413522
1 G0:0044255 cellular lipid metabolic process 6.62E-05| 12 6.10293
1 G0:0008299 isoprenoid biosynthetic process 0.000155| 5 7.717184
2 G0:0009755 hormone-mediated signaling 0.00288 4 7.089956
2 G0:0009605 response to external stimulus 0.007028] 9 6.730338
2 G0:0043687 post-translational protein modification 0.010556| 13 5.045178
3 G0:0015979 photosynthesis 4.95E-06 9 7.597105
3 G0:0019684 photosynthesis, light reaction 0.000103] 6 7.910601
3 G0:0009414 response to water deprivation 0.000164| 7 7.689971
4 G0:0048511 rhythmic process 0.000775| 3 9.29272
4 G0:0007623 circadian rhythm 0.000775| 3 9.29272
4 G0:0009909 regulation of flower development 0.001956| 2 8.337209
5 G0:0006139| nucleobase, nucleoside, nucleotide and nucleic acid roktgdrocess| 9.75E-05| 22 4.171339
5 G0:0016070 RNA metabolic process 0.004393] 9 4.806334
5 G0:0006350 transcription 0.007809| 11 4557692
6 G0:0000904 cellular morphogenesis duringftérentiation 0.02029 1 8.723626
6 G0:0010090 trichome morphogenesis 0.02029 1 8.781895
6 G0:0010091 trichome branching 0.02029 1 9.602875
7 G0:0005982 starch metabolic process 1.11E-05 7 9.19741
7 G0:0044264 cellular polysaccharide metabolic process 0.000128| 7 7.492662
7 G0:0005976 polysaccharide metabolic process 0.000128| 7 7.465486
8 G0:00061391] nucleobase, nucleoside, nucleotide and nucleic acid roktgirocess| 0.000491| 25 4.171339
8 G0:00062591 DNA metabolic process 0.001259] 11 6.144267
8 G0:0016458 gene silencing 0.005689| 3 7.713742
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Table 3.4: Over-represented GO terms in the PMDE partitoottHe Arabidopsis data set

Cluster GOID GO term p-values Gene IC
counts

1 G0:0048511 rhythmic process 0.000775| 3 9.29272

1 G0:0007623 circadian rhythm 0.000775| 3 9.29272

1 G0:0009909 regulation of flower development 0.001956| 2 8.337209
2 G0:0009605 response to external stimulus 0.001549| 10 6.730338
2 G0:0009755 hormone-mediated signaling 0.00288 4 7.089956
2 G0:0051641 cellular localisation 0.044049| 10 5.905509
3 G0:0006139| nucleobase, nucleoside, nucleotide and nucleic acid roktgdrocess| 0.000117| 22 4.171339
3 G0:0016070 RNA metabolic process 0.004739] 9 4.806334
3 G0:0006350 transcription 0.008494| 11 4557692
4 G0:00061391] nucleobase, nucleoside, nucleotide and nucleic acid roktgirocess| 0.000955| 25 4.171339
4 G0:00062591 DNA metabolic process 0.001787| 11 6.144267
4 G0:0016458 gene silencing 0.006411] 3 7.713742
5 G0:0015979 photosynthesis 3.48E-06 9 7.597105
5 G0:0019684 photosynthesis, light reaction 8.12E-05 6 7.910601
5 G0:0006950 response to stress 0.000711] 16 5.344044
6 G0:0000904 cellular morphogenesis duringftérentiation 0.02029 1 8.723626
6 G0:0010090 trichome morphogenesis 0.02029 1 8.781895
6 G0:0010091 trichome branching 0.02029 1 9.602875
7 G0:0008610 lipid biosynthetic process 0.000117| 10 6.413522
7 G0:0044255 cellular lipid metabolic process 0.000228| 12 6.10293

7 G0:0008299 isoprenoid biosynthetic process 0.000281] 5 7.717184
8 G0:0005982 starch metabolic process 4.36E-06 7 9.19741

8 G0:0044264 cellular polysaccharide metabolic process 5.19E-05 7 7.492662
8 G0:0005976 polysaccharide metabolic process 5.19E-05 7 7.465486

s)nsay [euswadx3 g'¢
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3.5.2 Perturbation Experiment

Table 3.5: Confidence levels)and corresponding p-value cuff® (o) in the starting
partition for the Galatose data set for the perturbatioregrpent

a | 0.0025 | 0.005 0.0075 0.01 0.0125 0.015
8.14E-28| 1.17E-25| 1.34E-24| 7.22E-23| 2.01E-21| 0. 6.53E-20
0.0175 0.02 0.0225 | 0.025 0.0275 0.03
2.51E-17| 1.00E-15| 2.67E-14| 1.50E-12| 0.002598| 0.002996

DIR|ID

In this experiment, we assess the indices’ consistencyinusgasing level of per-
turbation and their sensitivity to small perturbation. Bsrfprbation we mean small
error to be introduced into the system currently under extedn. The yeast galactose
data set is selected, both because it is relatively well t@ted and that the ground
truth, its assignment to four functional categories, isegiv Starting with the four
truegffunctional clusters, each time 2 more genes are assignewvataster member-
ships. Resulting values for the GO-driven indices WB, BH1I &$I are plotted across
the perturbations in Figurd.1Qa), while values for WB index and the data-driven
measures Dunn, CH, and DB index are plotted in Figdif€b) for clarity. All va-
lidity scores are normalised in this chapter to facilitadenparison. The further to the
right of the “Perturbation” axis in Figurg.1Q the greater the perturbation level, hence
the worse the quality of the partition. So it is expected thgwod validity index should
associate lower values to partitions corresponding todrigkrturbation levels.

The steady decent of WB index is a strong indication of itsstgtency. It is also
consistent with the data-driven indices, which again psabat the partition quality
is worsening. We observe that the Dunn index is very seeditiperturbations. This
is reasonable, since the Dunn index uses only the minimua-acltister distance and
maximum inter-cluster distance, while the CH and the DB talkelistances into ac-

count. In contrast to the descents of most indices, BHI wtaad to increase after
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Validity index
Validity index

Perturbation Perturbation
(a) (b)

Figure 3.10: Normalised scores of validity indices withreesing level of perturbation
in the yeast galatose data set. Large values correspondtbpgotitions for all the
indices. (a) GO-driven validity indices WB, BHI and BSI callated based on the GO
category ‘Biological process’, (b) WB index and data-dniwedices.
the 25th experiment. This may be due to the fact that the pefoalsuch perturbation
imposed on BHI is not heavy enough. Another possible reassiin BHI's low speci-
ficity of GO categories as analysed in Sect®b® Specific and general GO categories
are treated on the same level, but a general functional @gtegay not diferentiate
true clusters from wrong clusters. For example, a term ‘bwta process’ covers 191

genes in this data set, thus has no discriminative powernayamong the GO-driven

indices, better performers in this experiment are BSI and WB
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3.5.3 Finding Optimum Number of Clusters

To test the accuracy of the validity indices, we apply therthioyeast Y5 data set to
find the optimum number of clusters. While the complexity luEtgene expression
data set poses acute challenge to the clustering algorithemdegree of annotation to
this data set provides an excellent and accurate basisdaviluation of biological
validity measures. The experiment proceeds as followst,Fpartitions with a range
of cluster numbers [3- 12] are obtained for each of the six clustering algorithms.
Then the validity scores are computed using all validityiged. We examine the re-
sults by each clustering algorithm. Interestingly, onlytpi@ans from SplineCluster
and hierarchial clustering can provide discriminativedevices for evaluating the ad-
vantageAlisadvantages of the indices. Although the two algorithresrmt the best
for this data set from the previous experiment, they provaidy consistent results
across dterent cluster numbers, while others appear to be sengitislester number.
Hence, results based on SplineCluster partitions andriolacal clustering partitions
are depicted in Figurd.11(a) and (b), respectively.

First of all, all figures (including the ones not provided dé)eshow that CH in-
creases and BSI decreases monotonically, which sugges@sn@HBSI’s sensitivity
to cluster numbers. Hence, they fail to achieve the purpbskeotest. Although it
seems from Figur8.11(a) and (c) that WB tends to give higher score for smaller-clus
ter numbers, its score for the five-cluster partition stamats Consider that genes in
this data set were originally selected depending on whetiesr expression peak in
one of the five cell-cycle phases, this five-cluster pariitimay correctly separate the
cell-cycle genes. This is further confirmed by the BHI whidfoaselects five as the

optimum number. In the same figure, Dunn and DB indices onlgatamically go up
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and down, respectively. However, these two indices haf¥erdnt performance in Fig-
ure3.11(b) for the hierarchical clustering partitions. In this figuWB, BHI, Dunn and
DB have a preference for the numbers ranging from four torseleparticular, they
get high scores for cluster number five and six. The highestscfor WB and BHI
occur when the data set is partitioned into six clusters. @evious analysis of this
data set suggests that it is also possible that this datasedix functional categories
(see Table.4). Since biological pathways have a hierarchical strugtex@ressions
of genes involved in sub-pathways can be clustered intochigiers. Therefore, the
hierarchical algorithm may give a good solution when paring the data set into 6
clusters. Overall, the only indices that do not have monotbehaviors across cluster
numbers are the BHI and WB, reflecting their potential in cthg optimal number
of clusters. As a summary, WB is the only GO-driven index tred excellent perfor-

mance in all three experiments.
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Figure 3.11: Scores of the six validity indices as a functdrcluster numbers for
the yeast Y5 data set using (a) SplineCluster algorithmhi@rarchical algorithm, (c)
PMDE algorithm. Colour codes are the same as they are in &RQ8r(black: WB,
red: BHI, green: BSI, dark blue: Dunn, light blue: CH, pinkBpP
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3.6 Conclusions

3.6 Conclusions

In this chapter, we design a clustering validity index WB t@i@ome the challenges
presented by the complex structure of GO. Based on a newtsgrmelistance defined
within the realm of graph theory, the WB index successfullyorporates the strength
of relationships between terms. Another desirable featfiiee proposed index is that
it relieves the assumption that GO terms are compared orathe &evel. It takes into
account not only the variations in biological specificitiasGO terms, but also the
significance of terms to the gene clusters. Therefore, issertially diferent from
the validity measures where GO terms are used as functiategaries, such as BHI
and BSI. Benefited from these features, the proposed WB indeproven its superior
performance in the experimental evaluation.

In the comparative experiments, the proposed WB indexfepgace for cluster-
ing methods provides useful insights into these methodsedisaw the data sets, and
the result coincides with established theory. It also destrates its consistency and
sensitivity over diferent levels of random errors. Finally, it proves to be uskfu
selecting the optimal cluster numbers using biologicaMdedge. Although BHI and
BSI are excellent in some of these aspects, neither of thepedarms WB overall.
In summary, this study elucidates much insight into thedigliindices, the cluster-
ing methods and the data sets. We believe that the propoder aan aid in a more
efficient and &ective utilisation of the valuable GO information.

With the proposed index, one can select a clustering algarthat helps reduce
data dimension and select key components. However, for ¢kt step of biologi-
cal inference, for example, discovery of transcriptiomgluiatory relationships, single

source of data is often not ficient. When more than one biological data source is
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available, integrative analysis is likely to be signifidgradvantageous, and is cur-
rently the subject of ongoing research. In the next chaptber data sources will be
combined with gene expression data to increase the conédetiee inference of gene

networks, with the help of a new Bayesian method.
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Chapter 4

A Bayes Random Fields Approach for
Integrative Large-Scale Regulatory

Network Reconstruction

4.1 Introduction

One major aim in functional genomics is the reverse engingesf transcriptional
regulatory network, which brings the understanding of fiomal mechanisms in or-
ganisms to a higher level. In the hope of discovering trapgsonal regulatory activi-
ties, one promising research direction is the integratnadyesis of diverse data sources
[75].

In a transcriptional system, genes and proteins interétt @dch other in various
ways as shown in Sectidhland1.2.3 Basic interactions include transcription fac-
tors binding to their target sites on DNA. More complex iafgfons exist to account

for a proportion of all interactions. For example, protetas combine to form multi-
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protein complexes that can perform higher level functioneegulation, for example
cleaving RNA or unzipping DNA. These interactions eithepose constraints on, or
provide capabilities to, the regulatory functions beingg@ened. The interactions in-
volved in transcriptional regulations can be collectivelgresented as a transcriptional
regulatory network.

It is often dificult to conclude which genes play a regulatory role and homege
regulate each other with traditional biology experimetitss then a major challenge
in functional genomics to map out the topological and dymamproperties of the
regulatory network. The availability of diverse data froigtithroughput experiments
has motivated many computational methods, 2875, 135 14§ for good reviews.
Naturally, integrating information from fferent processes and interactions involved
in regulatory activities contributes to a deeper undeditapof the underlying system,
and therefore constitutes a promising direction for refgmanetwork reconstruction.
However, huge amount of data incurs mangfidulties in information exploitation,
which entails objective techniques.

A key challenge in data integration is the development oftaisb system that can
be routinely applied to heterogeneous and noisy data. Hemveuch system has not
yet been proposed. The reasons are manifold. First, bzdbdata are of quite dif-
ferent nature and formats. For example, microarray geneesgn data are often
high-dimensional if they are sampled over time, whilst mafsthe other data types,
e.g. protein-protein interaction data, are one-dimeradiorhe problem becomes how
to facilitate dfective integration between data offérent formats. Another reason is
that the coverage of each data type ifetent from each other. While gene expres-
sion data cover almost the entire genome, other data soaredar more sparse. For

instance, transcription factor binding data can only péyticover the interactions be-
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tween transcription factors and other genes. Therefoeeintiegrative system has to
be carefully designed to address these issues.

In this chapter, we propose a Bayes-Random Fields appr@Rs) for the in-
tegrative analysis of large-scale regulatory networkse pitoposed system is capable
of integrating unlimited data sources for discoveringvate network architecture of
large-scale networks. A potential function is designedripase a modular constraint
on the resultant network, teamed with a full Bayesian apgrdar combining informa-
tion from heterogenous data sets. The probabilistic natoer framework facilitates
robust analysis in order to minimise the influence of noiserent in the data on the
inferred structure in a seamless and coherent manner.

Our inspiration comes from the synergy between the problenegulatory net-
work reverse engineering and the inverse problem in sigaigssing 130. Over the
past decades, robust statistical methods have maturedonte of the most power-
ful techniques to extract meaningful conclusions from awbity of data types. The
context is similar to the newly arisen study of biologicaladetegration. However, in-
stead of rigidly relying on existing techniques, we aim tketinto account the nature
of biological data.

This chapter is organised as follows. In Sect@, we briefly review the data
sources introduced in Sectidrl.land discuss rationales and limits in integrative anal-
ysis with respect to the features of these data sourcestititkimethods for regulatory
network reconstruction are reviewed by their categorieaging up new challenges.
The proposed method is then introduced in Seciddand evaluated in experiments
with both simulated data sets as&ccharomyces Cerevisigata sets. Further, we
provide experimental results and analytical discussionsveal the varied character-

istics of diferent data sources. It is our hope that such analysis reeatdementary
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structure of regulatory interactions responsible for bigbvel properties of organisms

such as cell growth and death.

4.2 Data Sources and Existing Methods

4.2.1 Heterogenous Data Sources

The growing availability of genomic, transcriptomic anai@omic data is providing
large-scale view of biological systems. With heterogeraata sources available, it is
non-trivial to understand the features, relationshipsratidbility of these data sources
for the purpose of regulatory network reconstruction.

The data sources introduced in Sectioh. ], which are acquired at filerent stages
of cellular activities, relate to each other in one way ortheo For example, changes
in gene expression may be a direct result of transcriptiotofebinding. In this sense,
we can expect information from these data to be combined@mad & more powerful
prediction system. Indeed, there are many advantagesagratton analysis for these
data. First, data integration can help filter out erroneodigrination and increase
the confidence in prediction, since biological data arerofteisy with many false
positives. If there are evidences from multiple independsiperiments, reliability
of conclusions drawn is greatly improvefy. Second, data integration can increase
the coverage of the genom&3y. Since diferent data sources may covefteient
subsets of cellular components, an increase in the covenatiee inference result
can be expected by summarising findings from various subsEt#d, integration
can help address the problem of specificity in some data esufor example, gene

expression data alone often lack the degree of specificged to make accurate
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biological conclusions, which can be made up by the trapgon factor binding data.
The sparsity of transcription factor binding data, on thheotand, can be compensated
by the wide coverage of gene expression data. Togethee ttea sources can help
increase overall predictive power fromfidgirent aspects and onflidirent levels.

There has been, however, a concern about data dependehedntegration liter-
ature, which is that subtle correlations and dependenaiesg data can confound the
power of prediction91]. Recently,Lu et al. [91] shed light on this particular aspect
by correlating diverse genomic features and observing thiggration results. They
found no strong dependence in the 16 genomic features dtumdileiding gene expres-
sion data and functional annotations such as Gene Ontollgg, it appears that a
saturation &ect exists in integration systems. At some point, the ytilftadding more
data sets saturates in the sense that adding more data Beitstimduces confusions
instead of further reducing noise. By integrating only a fgwod” features, maxi-
mum predictive power of a system can be achieved. Therefloeegenomic features
to be integrated has to be carefully selected. Therefois,important to investigate
the dfects diferent data types have with respects to the transcriptiegalatory sys-
tems under study. In the next subsection, we review existiethods and their choices
of data for network reconstruction. Later in the experirsemé empirically test the

prediction power of the data types studied in this thesis.

4.2.2 Existing Methods for Network Reconstruction

In recent years, many researchers devote their work to stgdlye properties of dif-
ferent genome-scale data, resulting in many methods fonsgaucting transcriptional

regulatory networks. To understand the essenti@dinces among these methods, it

120



4.2 Data Sources and Existing Methods

is important to review existing methods based on the datacgsources they used
in order to identify their merits and deficiencies, so thapiavement can be made

systematically.

4.2.2.1 Methods for single data source

Microarray data are perhaps one of the most widely used dat@es in this area of
research. Manyfeorts for the reconstruction of transcriptional networks spent on
analysing microarray gene expression data aldi® 113. Among earliest works,
[50] is an influential paper based on Bayesian networks for geteark inference
from gene expression data, with more recent perspectivg49dn More Bayesian
approaches to inferring sparse graphical (Gaussian) md84dl were described in
[38, 74].

In more recent years, two types of methods, dynamic Bayesamorks [L1] and
graphical Gaussian models, account for a major part of reseaynamic Bayesian
networks have been widely used in time-series data analysascount for system
dynamics 11, 65, 154. For example, a dynamic Bayesian networks approach based
on a first-order auto-regressive model were applied to geheank reconstruction in
[81]. However, inherent problems in dynamic Bayesian netwarkke them relatively
ineffective for large-scale prediction, i.e., when there areymaamiables. A concern
about the infficiency of dynamic Bayesian networks inspires a number oémagap-
proaches, e.g. a fast “Bayesian-inspired” algorithmQpgen-Rhein and Strimmer
[107.

Graphical Gaussian models are undirected graphical meddlknown for dis-
criminating direct and indirect correlation between vialés. In essence, partial cor-

relation is used as the mathematical foundation for detgeheaningful interactions.
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Partial correlation is indicative of direct interactionstlveen a pair of variablggenes,

by eliminating the &ects from the rest of variablggenes 113. Previously, graph-
ical Gaussian models have been applied for the recongiruofi gene networks by
selecting significant cdicients of partial correlation. Significant d@eients are in-
dicative of direct interactions between genes and thezefepresent existing edges in
a network. As a breakthrough to solving the small sample lprobn gene expres-
sion data, Schafer and Strimmdrld proposed an shrinkage estimation method of
partial correlation and the use of FDR for selecting sigaificcodticients of partial

correlation.

4.2.2.2 Methods for multiple data sources

However, single data source is often notfmient for accurate network modelling
[11]. When more than one biological data source is availabtegnative analysis is
likely to offer significant advantages, and is currently the subject gbimg research.
By integrating multiple data types, one can expect falsatiges to be reduced and
disparities between flerent levels of the system to be identified. Further, intagmna
helps explain complex biological interactions on a higlegel than using a single data
alone [L1]. Computational techniques have evolved from the simpleshg model
[142) to more sophisticated Naive Bayesian Networ82, [12(, and progressively
developed into substantially more complex and powerfuiesys nowadays8p, 127].

In the integration context, Bayesian methoéteoa range of advantages over con-
ventional statistical techniques that make them partigul@ppropriate for complex
and noisy biological data. The Bayesian statistical pgradis probabilistic in the
sense that observations, parameters and hidden variablagated together in a con-

sistent manner. Consequently, various Bayesian methodafaintegration have been
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explored for the reconstruction of regulatory networks 19, 76, 82, 127, 137, 162].

Among earliest attempts120 set up two probabilistic models for gene expres-
sion and protein-protein interaction data, respectivillgt can only be solved when
unified. Expression data were modelled with Naive Bayesetworks to define a
joint distribution as a product of probabilities of disjbrlasses, while protein-protein
interaction data were modelled by a binary Markov randond$iéb represent connec-
tions between neighbouring variables.

Later in 1], gene expression data and protein-DNA binding data werglyo
considered to infer transcriptional regulatory networés many chosen yeast tran-
scription factors. However, flerent data types were not jointly modelled in a coherent
framework, and associated measurement errors were natidyptonsidered. More
complicated integration system was presented_ioyet al. [86], where data were
jointly modelled within the context specific Bayesian framoek for infinite mixture
models. In the experiments, the method was able to produce fuoctionally coher-
ent transcriptional modules than two alternative algonghGRAM [5] and SAMBA
[128.

Another type of approach uses one data source as prior kdgw/l® integrate
with another in a Bayesian context. For examdernard and HarteminKL1] set up
dynamic Bayesian networks for modelling gene expressidta, dambined with tran-
scription factor binding data as prior knowledge and theeadigtribution assumption
made in L19. They improved the method iG] by suggesting a new prior and using
dynamic Bayesian networks instead of Bayesian networklatate network can in-
clude cyclic structure. However, the experiment to vakdats method was performed
on a set of 25 genes with gene expression data consisting toh&%oints, which is

far less genes than usually required for network reconstruaowadays. Suet al.
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[127] treated transcription activity represented by exprasaa result of transcription
factor binding. If the binding data show evidence of requiatelationships, then the
relative binding intensity will be used in modelling the exgsion of the target gene.
Yet another common approach is to alternate between twotgaés during the
computation process, especially when the main task is tatifgleregulatory motifs
[19, 76, 167. The strategy to accomplish this involves, first, clustgigene expression
data sets, and then isolating the upstream regions of tkéeckd genes and analysing
them for common cis-regulatory motifs. If the identified m@torrespond to known
transcription factor-binding sites, the regulatory netwthat is responsible for the

observed transcription state can be inferred.

4.2.3 Existing Problems and Prelude to the Proposed Approdc

Very often, integrative systems are constrained to two methliferent data sources,
e.g., gene expression and transcription factor binding @at[11], gene expression
and protein-protein interaction data fdd0 121], and gene expression and sequence
data for [L9, 76, 162. It is sometimes preferable that the integrative systemlma
adapted to new data sources. Another research gap is trelyusinly a small number
of genes can be incorporated into a regulatory network] &4, due to the inéficiency
of the learning techniques. However, it is necessary tolputégulatory relationships
in a larger context, both because transcriptional actisiire usually multi-stages and
operate like chain actions involving a large number of geaed that gene regulations
are typically embedded in a vast network of biochemistrgrattions 82].

The proposed method to be described later in Sedtiddiffers from previous ones

by using a Bayesian framework that can be routinely appbetifferent data sources,
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while remaining €icient enough to facilitate large-scale analysis from theeafgar-
tial correlation. Since the focus of this study is the reléstructure of large-scale
networks, we only consider undirected graphs. Previoudiesthave shown that the
nature of a network can be recovered even if it is undirectéi Moreover, an undi-
rected graph is conceptually simple in the sense that tHagqarowith feedback loops
as in a Bayesian network is out of the question, hence is matelyapplicable, es-
pecially in integrative study when some of the data may beraational (for example
the gene ontology categories).

The contributions of this chapter are three-fold. First,peepose a full Bayesian
approach to incorporate not only microarray time-serig¢a,daut also other heteroge-
nous data sources into a integrative network. Second, vessisse degree to which
prediction power increase with the addition of each datacsourhe &ect of integrat-
ing heterogenous data sources is analysed in a substamiafle coherent manner.
Third, to achieve better understanding about which dataceobest benefits the in-
tegration system, features of heterogenous data such esdigpeand coverage are

discussed.

4.3 Proposed Bayes Random Fields (BRFs) Integrative

Method

The integrative method aims to combine information fromehegenous data with di-
verse formats. Inintegrative study, microarray timee®data attract special attention,
because their dynamic features can directly reveal actwgponents within the cell.

While the dynamic nature of the data is important, it alsamsahallenges because
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of the high dimensionalityd5]. To reduce data dimension, partial correlation of gene
expression time series, for itfieiency and &ectiveness, is used as the inference re-
sult and incorporated into the integrative framework. Detbout partial correlation
computation is given in Appendix B.

Since gene expression data is replaced with their partiaélation inference re-
sults, the inputs of the integrative system can be unifiedpnbbability matrices. Each
entry in the matrices can indicate the probability of int¢i@ between a pair of genes,
that is, the probability that an edge exists between therhametwork. LefX denote
the edges amonggenes in the networK = {x|l = 1, 2, ..., €}, with e the total number
of edges,e = n(h — 1)/2. Now the integration problem can be formulated as infer-
ring binary variables< from m data sets from various data sources, each represented
as a matrix of dimension x n. Let p(X) denote a probability density over hidden
variablegedgesX, now we define a Bayes framework with a random fields model for

integrative analysis.

4.3.1 Bayes Framework

The aims of the Bayes framework are to integrate informaftiom m data matrices
{yili = 1,2,...,m} and to extract regulatory relationships summarised by ancom
featureX in the data. Suppose each data matrix represents a progexy{oi|i =

1,2, ...,m}, with Gaussian noisgs|i = 1, 2, ..., m}, then we have

Ui = @i + &, i = 1,2,...m (41)

Now we can set up a model usixgas the common featytedden variables among all

the data. The objective is to estimate directly fremot only¢ but also their common
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featureX. The problem can be formulated as

P(P1s o b X1, .. Yi) (4.2)
:p(¢l’ ey ¢m|x’ l/’la (223} l/’m) p(ijl’ ey lﬁm)
ocp(r1lp1, X)... p(@mldm. X)P(d1IX)... p(¢ml X) p(r1|X)... p(¥rml X) P(X)

o<p(X) [ | p(wilgr) p(iX) p(wilX).
i=1

Thus in order to gep(¢s, ..., ¢m, X1, ..., ¥m), we need to definp(yil#i), p(¢ilX), pilX)
and finally p(X). The definitions of the first three probabilities are stidiigrward.

Suppose; is Gaussian with the mean equal to 0, according toZ&d).(ve have

(Wi — ¢i)2}' 4.3)

PWilgr) = N (¢, 02 ) = (\/_Zﬂ—)e exp{— 502
T, i

There are two classes for the hidden variab¥sO and 1, representing the non-
existence and existence of an edge, respectively. We camadhat the probability

density function in the two classes can be characterized(py, o%) andN(ui, o3),

p(#ilX) = ;eo exp{

(¢ —,Uio)z} . 1 (¢ — pn)?
(Varoio) (

SVRCETER
20-i20 \/ZO' il)el 20—|21
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4.3 Proposed Bayes Random Fields (BRFs) Integrative Method

whereey ande; denote the number of edges in class 0 and class+le; = e. With the

same principle, we assigi{yi|X) by using Eq4.1), Eq.@.4) andp(e;) to the following

p(wilX) (4.5)
=N (,Uio, O'izo + a’ﬁi) . N(,uil, 0'i21 + 0';)
1 (i — pio)® 1 Wi — pin) }
= exps — : expd —————2_ 1.
(Vor(op+o2))” { 2(ch ffﬂ} (Ver(o +o2))” { 2( +02)
(4.6)

p(X) is defined in Sectiod.3.2

4.3.2 Random Fields Model

To estimatep(X), a random fields mode8[)] is desirable to represent a known feature
of the gene network. A widely accepted concept in transoniits is the co-regulation
within a gene cluster (co-expression), which can be inetgal as that if a gene is
regulating most of the genes in a cluster, it is likely thak$ also exist between this
gene and other genes in the same cluster. In the context efggwork modelling,
we define the following model to represent this feature.

To define our clusters, we first perform cluster assignmeantgénes. The genes
are clustered inta clusters{Cjli = 1,2, ...,z using gene expression data, preferably
by a tight clustering algorithm1b7 proposed in Chapter 2 which is designed for
gene expression time-series data. The purpose of appligiagrtethod is to obtain
relatively smalitight clusters, so that relevant information based on tlcassters can
be inferred by the random fields model. This clustering meik@lso unsupervised in

a sense that the number of clusters needs not be specifiegoférgial function in the
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4.3 Proposed Bayes Random Fields (BRFs) Integrative Method

random fields model is defined on the edges, i.e., betwees plagenes. Leb;c, be
the number of edges between gemad cluster, d; is the degrees of connectivity for
genei. The random fields method is formulated as the sum of potsemtieall possible

edges:

p(X) o exp| >° > wij (hic, + hyg, - (@/27 - (di/2%) , 4.7)

i A
wherew;; = (ICi| - |IC;|) is a normalising factor. The first two terms in the potential
function represents the number of edges between gane the cluster which gene
belongs to, and vice versa, while the last two terms are thea®d number of edges
connecting geneand clusteC;, and vice versa. The rationale supporting the potential
function is that since co-expression indicates co-reguiaa higher potential should
be given to the interaction between a pair of genes, if thetiexj interactions between
their clusters are more than expected. An advantage ofdatiog such dependency
is that it imposes a modular constraint as a known gene nkti@ature and iteratively

refines the territory currently under evaluation.,

4.3.3 A Gibbs Sampling Algorithm for BRFs

Let 6 denote the parameter s@tli = 1,2,....m}, 6, = {uio, i1, Tio, Ti1, 05 . Jointly
sampling the whole sét;, 6;, X} from large-scale data; is intractable. Since now all
the variables of interest can be estimated by conditionmiipe others, Gibbs sampling
can be used to cycle through these conditional statemeptigetively conditioning

on the interim values of all other variables, Gibbs samglesdo empirically approx-
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imate the desired marginal distribution for each varialdle.assigra posteriorilaw

p(g, 6, Xly) (4.8)
=p(¢, XI6, ) p(dlg, X, ¥)
=p(¢1X, 6, ¥) p(Xly, 6) p(blo, X, ¥) (4.9)

= l_l P(gil X, 6, vi) P(X[egi, 6;) p(Bili, X, ;).

Thus given datdy|i = 1,2, ..., m}, the Gibbs sampling algorithm is formulated as the

following:
1. Initialisation

(a) Firstarandom initial valuX© is assigned.

(b) The conjugate priors for the hyperparameter variangdk < {0, 1}) and
o, in the normal distribution model are the inverse gamma idistions

(79) [53], while for the hyperparameter meganit is given a normal prior.

Therefore, first the hyper-hyperparameters;, vi, &, a.,, B, 1 € {1, 2, ..., m}

are assigned. Then the priors are sampled from the follodistgbutions

o ~ I5(ai, By), (4.10)
pik ~ N(vi, ), (4.11)
o2 ~ 15(ae» ), (4.12)

with k € {0, 1} representing the two classesX¥alues and € {1,2,...,m}

representing then data types.

(c) Clustering is performed using gene expression datayukeunsupervised

130



4.3 Proposed Bayes Random Fields (BRFs) Integrative Method

tight clustering algorithm proposed in Sectidr8to obtainz clusters.

2. For each iteration, samp¥efrom the posterior distribution:

a(Xly, 0) o« p(Ya, .., Yml X, 61, ..., Om) P(X) (4.13)

= p() [ | pwilX.6).

which can be achieved according to Egdj and Eq.4.7), respectively. Ac-
cording to Eq4.13, for each elemen, in X, | = 1,2, ..., e, two probabilities
can be computedp; the probability that the element X belonging to class 1
andp? the probability that the element Kibelonging to 0. The probabilities are
then normalised and compared with a number drawn from a umidstribution

(U(0, 1)) to decide whether the new value takes 1 or 0. This is to coenp

1
i >=1

’ 1 0
X = Py J;lpl . t~U@O,1). (4.14)
! <t

P+

3. Sampl€¢ili = 1, 2, ..., m} from the posterior distribution
The posterior distribution af is produced by the product of the likelihood func-

tion and the prior:

n(gili, X, 6;) o< p(wildi, X, 6;) p(eil X, 6;)

= N(¢i,02) - 1_[ N(uixs 08) (4.15)
k=0,1
-1 -1
S TSR
k=0,1 O O/ \Ug O O O
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4. Sampldéli = 1, 2, ..., m} from posterior distributions

1
ai~39@r+%4%+§;;wq—mo%, (4.16)
o[y D) (1 &) (L 3‘1]
Mik N(S|2+ o2 )(§2+0'ﬁ() ’(§2+0'ﬁ<) , (4.17)
1
O-gi ~J5 aai"'g’ﬁsi"'EZ(d/i_(ﬁi)z]- (4.18)

5. Repeat Step 2-4 until convergence.

Convergence is determined according to the Zellner and kieria [160. In the case
of Gibbs sampling, the unknown parameters can be separatetivo sets:{X} and
{0, ¢}. Therefore we have(X, 0, ¢ly) = n(X|0, ¢, ¥)r(0, o) = 7 (6, ¢|X, ¥)m(X|y). Let
iterationb be the candidate stopping point of the chain, ar)\@(h//) be a smoothed

empirical estimater,(X|y) :Z?zl n(X10j, ¢j,¥)/1. When the ratio of convergence

5, = TXI6.9. Y)io(6. 91Y)
° 7 TR0, ¢IX, )T (XI)

(4.19)

is approximately equal to one, we stop the estimation psoces

In summary, we empirically obtain the posterior distribut for the parameters
and hyperparameters. If the Gibbs sampler has rtifiicgntly long, this algorithm
produces a complete sample of the fiagents. The Gibbs sampler decomposes the
whole set of parameters into three s¢tg8 and X, since the form of random field we
have chosen makes an exact sampling(®fi¢, ..., dm, ¥1, ..., ¥m) impossible.

There are a few points we noted here for the proposed algorfirst, the posterior
of meanuy depends on the data only through the sum of da#g, meaning that this

data summary is sticient from the data to estimate the unknown mean. Seconleas t
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data size increases, the value of estimated mean will istrgly depend on the data
and variancery, making the prior assumption less important. Last, it issgae that
the set gengproteins with regulatory roles are known for some genomestagrefore
regulatory interactions only exist between them and alegeithis can greatly reduce

the number of variables and speed up the algorithm,.

4.4 Experiments

Both simulated data and biological data are used for exariah evaluation. Biolog-
ical data can only provide anecdotal evidence in networkdggbn, since the knowl-
edge of gene regulation is far from complete. It seems thataveuse functional
annotations as golden standard, but annotation informatimong diferent annotation
databases is too inconsistent to support a large scaleagiad99]. On the other hand,
simulated data sets can provide more controllable comditio test an algorithm and a
standard for benchmarking. However, to obtain meaningfsilits, the simulated data
need to share statistical characteristics with biologiedd.

For synthetic networks, the proposed algorithm can be coedpaith graphical
Gaussian models on the basis of simulated gene expressiargeaerated by Syn-
TReN. For real gene network, we integrate gene expressitar) tlanscription factor
binding data and protein-protein interaction data usimgatorementioned framework
for yeastSaccharomyces Cerevisigéomparison of the resulting network and a golden

standard network clearly shows the benefits of data intiegrat
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4.4.1 Synthetic Networks

We use SynTReN to generate synthetic networks as follow t@pologies of the
synthetic networks are sub-sampled from a yeast transmmgdtnetwork in p6]. Syn-
TReN uses a sampling method named cluster addition (irgteghh is selected as a
randomly selected node and all of its neighbors). Combini¢ld éxternal conditions
that trigger the network, the expression levels of genesah e&xperiment are gener-
ated according to the activities of their regulators.

Table 4.1: Some parameter settings for SynTReN softwarenergte the simulated
data sets, the rest are set as default.

Data set 1 2 3 4 | 5
Background Nodes 50 | 50 | 50 | 50| 50

Bio Noise 0.02| 0.05/0.08/0.1| 0.1

Exp. Noise 0.02| 0.05|0.08/0.1|0.12

Noise on correlated input | 0.02| 0.05| 0.08| 0.1| 0.1
Fraction of complex interactions 0.1 | 0.1 | 0.2 | 0.2| 0.3

Five synthetic networks are generated with Gaussian nt@sel (15%) and rela-
tively large proportion of complex interaction (30%). Dietabout the configuration
of SynTReN are provided in Tabkel The five synthetic networks consist of 50, 80,
100, 200 and 500 genes, respectively. Each network is sdmapl@5 time points. A
200-gene synthetic network is plotted in Figdté&(a). Note that there is only synthetic
gene expression data, so we can compare the results fromicgb@aussian models

with those from the proposed BRFs model.
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(a) A synthetic network of 200 genes

True positive rate

False positive rate

(b) ROC curves for comparing graphical Gaussian models with
the proposed method on five synthetic networks of variolessiz

Figure 4.1: Experimental results for the synthetic network
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4.4 Experiments

Since with single data source both methods are based oalganielations, BRFs’
performance can be assessed to seeffbetef the modular constraintimposed by the
random field model. ROC curves for both methods on five dataasetplotted in Fig-
ure4.1(b). The violet curves representing BRFs inference showsopperformance
to the green curves representing graphical Gaussian miodetence. For the simu-
lated data BRFs make use of its random field component buhedabtegration feature.
In this way, we can observe that the proposed BRFs methodiraprthe results by

imposing a modular constraint in network inference.

4.4.2 Saccharomyces Cerevisiae Regulatory Network

For the reconstruction of the ye&dccharomyces Cerevisieggulatory network, three
real data sets are integrated in this experiment. The ressgtimpared to a golden
standard network to evaluate the accuracy of the propos#tbiheThe three data sets
have their unique features: transcription factor bindiatagrovide direct information
to understand the regulators involved in transcriptiontgn-protein interaction data
reveal proteins that involved in the same pathway, as weklased to genomic level
- interacting proteins are often co-expressed and coikerhto the same sub-cellular
compartment. These data types were discussed in detaittio84.1.1 Both of the
transcription factor binding data and protein-proteirerattion are of certain degree
of specificity and sparsity, but they can only describe theempial of interaction. In
contrast, microarray expression time series are a compimyesource that provides
dynamic information about the expressions of almost alegeamder certain conditions
in an organism. Although the data are known to be noisy, tefigat actual interactions

in the biological process under analysis.
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For gene expression data, the alpha factor arrest data seleisted from 126
since it has less missing data than the data set of the afrastacl5 temperature-
sensitive mutant, yet longer time-series than the datafsdttsiation experiment. It
consists of expression data of 6178 genes and 18 time poitit8y87% missing data.
The protein-protein interaction data set is downloadechf@IP database7P] con-
taining 18,272 interactios from 4,985 yeast proteins (dsetf 2008). Protein-protein
interaction data stored in DIP database were obtained ghrowanual curation of the
scientific literature including both direct and complexeiratctions. Transcription fac-
tor binding data are from a data set consisting of the bindfraimost all known yeast
transcription factors monitored during cell growth in rictedium BQ]. After exclud-
ing some probes for some computational reasons and probigmsheir microarry
experiments, they provide binding data for 6229 genes a@083 transcription factors
with 2.5% missing data.

For the golden standard netwggkound truth, we selected a yeast regulatory net-
work from a comprehensive stud93]. The network was assembled from literature
and a large amount of data, then divided into condition sjpesilb-networks includ-
ing cell cycle, sporulation, diauxic shift, DNA damage at@ss response. Altogether
it contains 7,074 regulatory relationships between 14@staption factors and 3,420
target genes. In this paper the cell cycle sub-network ofibtactions among 296
genes is used as golden standard to compare with part ofdhkeamet network.

To infer a cell-cycle specific network, we selected 909 géyascluding the Spell-
man’s 800 cell cycle’s gene&26, Luscombe’s 296 cell cycle’s gene, and Price’s 104
cell cycle genes]0g. Among these genes, there are 84 transcription factorés »f
the gene expression data are missing for the 909 genes. a@tefegenes with 50%

of their expression data missing and the corresponding atataliscarded from use.
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The rest of missing data are imputed by weighted K-neareghheurs (KNNimpute)
shown to be robust for microarray datbh3fp. For this gene set, the available tran-
scription binding data are transcription factors bindifg @enes. 782 protein-protein
interactions are found among all genes, which again conspafsenly a small fraction
of all possible interactions (0.09%). All the data sets agglable in the supplementary
files.

BRFs inferred a network with 1,674 interactions betweerBéhé&anscription fac-
tors and 669 genes, leaving 240 genes as irrelevant to thbtioconunder study. The
full adjacency matrix is shown in Figu#e2(a). Since the network is too large to vi-
sualise, we select a sub-network of the 296 genes in the gadadard cell cycle
network and plot it in Figurd.3. The adjacency matrix of sub-network of 296 genes
is illustrated in Figurel.2(b) with four visible big clusters. This sub-network comsi
608 interactions in total. Given the golden standard nédtywee can now investigate
on the power of data integration. We address this issue byadny the prediction
power of individual data source and the integration re®&ytassuming there is a sim-
ple cut-df selection method for the ctiEcients, we plot the ROC curves for each data
source in Figurel.4. For example, since the binding data are the probabiliias d
transcription factor binds to a gene, a ctittbreshold can be selected to include those
interactions with higher probability than this threshdldhen the result of BRFs infer-
ence{pl = 1,2, ..., e} instead of the binary matriX, is plotted (red curve) in Figure
4.4

Individual data source can only contribute to a weak prediof the regulatory
network, as can be seen from their ROC curves (black, violéigaeen) in Figurd.4.
This is consistent with previous findingsg, 91]. The predictive power with these

data sources is often adverselfiegted by inherent factors of production techniques.
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(a) The adjacency matrix of the inferred network, the
part in dash frame corresponds to cell cycle specific sub-
network.
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(b) The modularized adjacency matrix of the cell cycle
specific sub-network.

Figure 4.2: Experimental results for the 909 yeast genes.

For gene expression data, its ability to properly portranscription is due to the
experimental noise associated with the DNA microarrayrepie. As it is shown in
Figure4.4, the ROC curve (black) for gene expression partial corigglds indicative

of its limited predictive power of the true network, althdugith a comprehensive

coverage. Although binding is a necessary condition foulagry activities, it may
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Figure 4.3: Plot of the inferred cell cycle specific sub-raty with size of the nodes
indicating the degree of connectivity.

not happen during certain cellular process. Moreover, exyatal noise, occasional
uncorrelation between binding and regulati@h 4nd environmental dependence in
binding [60] cause dfficulties. The violet curve in Figuré.4implies relatively good
quality for the binding data, but because of the missing (@itdhe 70 transcription
factors, only 57 is present in the binding data), it cannovjle a good coverage.

The protein-protein interaction data is so sparse that &@#y protein-protein in-

teraction pairs were found among 296 genes, and therefoomdtitutes only a small
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Figure 4.4: ROC curves for threshold selection methodshettiiree data types used
in network reconstruction and the resultant network by BRRghe 296-gene sub-
network. PCOR stands for the partial correlation.

fraction of all possible interactions (296296 = 87,616). In addition to the spar-
sity and poor quality, the main reason that protein-proteiaraction alone achieves
low predictive performance (green curve in Figdrd) lies in that less direct relation-
ships exist between protein-protein interaction and taedtriptional network, since
the protein-protein interaction data can only indicatesptiils rather than presences
of such interactions in the transcriptional process. Thaso consistent with previous
findings [L1]. Nonetheless, the inclusion of a data set of low relevamcketegh noise
into the integrative system reflects the robustness of thegsed algorithm, since the
resultant network is neither biased to noise ntected by the irrelevant information.
In Figure4.5, the distribution of connectivity degree of nodes in the fidtwork

shows a power-law tail. To look for the functional modulesirch a sparse network,
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Figure 4.5: Connectivity degree distribution of the 29&@sub-network. Th& axis
shows the degree of connectivity of 296 nodes on kmgle.

we study the transcriptional modules formed around hulegenhe main hubs in this
sub-network include transcriptional factors SWI14, SWI&X1, MCM1, ACE2, etc.
These 8 genes and their first neighbours cover 48% of 669 g&dedound that the
clusters formed around these genes are significantly esttiehth specific functions
in Gene Ontology. The enrichment analysis result is pravideTable4.2 Plots of
time-series data of the eight transcription factors andyhrees they are regulating are
in Figure4.6. Also we analysis the adjacency matrix of the 296-gene sivark.
Finding modules in gene networks is nontrivial, since thgrde of overlaprotein-
protein interactionng is high because of the existence bshiWe focus on the four
visible big clustersiillustrated in Figude2(b). Analysis on the function of genes within

these clusters reveals 4 phase-specific modules as showabledT3.
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Table 4.2: Over-represented GO terms in the transcriptimaaules for eight tran-
scription factors.

TF GO term p-values
SWI6 G1/S-specific transcription in mitotic cell cycle 6.68E-10
SWI6 regulation of cyclin-dependent protein kinase activity 2.14E-09
SWI6 regulation of cell cycle 4.02E-09
SWI6 mitotic cell cycle 3.53E-08
SWI6 regulation of kinase activity 6.71E-08
SWi4 biological regulation 2.41E-10
SWi4 G1/S-specific transcription in mitotic cell cycle 3.38E-10
SWi4 regulation of cellular process 4.79E-10
SWi4 interphase of mitotic cell cycle 5.50E-09
SWi4 regulation of cyclin-dependent protein kinase activity 8.87E-08
MBP1 regulation of cyclin-dependent protein kinase activity 7.47E-10
MBP1 regulation of kinase activity 2.37E-08
MBP1 mitotic cell cycle 3.24E-08
MBP1 mitotic sister chromatid cohesion 4.87E-07
MBP1 regulation of catalytic activity 8.09E-07
MCM1 mitotic cell cycle 3.36E-08
MCM1 biological regulation 7.40E-07
MCM1 interphase 1.22E-06
MCM1 regulation of cell cycle 1.82E-06
MCM1 pre-replicative complex formation 4.18E-05
FKH1 cell cycle 6.39E-07
FKH1 cell cycle phase 2.07E-06
FKH1 interphase of mitotic cell cycle 7.14E-06
FKH1 chromosome segregation 2.59E-05
FKH1 M phase of mitotic cell cycle 4.35E-05
SWI5 | regulation of transcription from RNA polymerase Il promadbg carbon catabolites 2.40E-05
SWI5 | negative regulation of transcription from RNA polymeralserbmoter by glucose| 2.40E-05
SWI5 negative regulation of transcription 6.68E-05
SWI5 negative regulation of transcription from RNA polymeralsgrbmoter 1.06E-04
SWI5 regulation of transcription, DNA-dependent 1.39E-04
YOX1 DNA replication 9.48E-05
YOX1 mitotic cell cycle 4.64E-04
YOX1 cell cycle process 1.07E-03
YOX1 regulation of cellular process 1.37E-03
YOX1 mitosis 1.81E-03
ACE2 regulation of transcription from RNA polymerase Il pronote 9.58E-06
ACE2 regulation of biological process 2.74E-05
ACE2 regulation of transcription 3.52E-05
ACE2 negative regulation of transcription, DNA-dependent 1.85E-04
ACE2 regulation of cellular metabolic process 2.40E-04
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Figure 4.6: Plot of time series data of the eight transaipfactors (pink) and the genes they are regulating (grey).
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Table 4.3: Over-represented GO terms in four phases spewifitiles found in Figurd.2(b).

Cluster GO term p-values Gene
counts
1 regulation of cellular metabolic process 6.14E-12| 22
1 transcription, DNA-dependent 1.03E-11| 22
1 regulation of transcription 2.40E-10| 16
1 regulation of transcription, mating-type specific 8.82E-10 5
1 regulation of biological process 5.73E-09| 21
2 regulation of transcription, mating-type specific 2.17E-05 3
2 transcription 5.80E-05 4
2 transcription, DNA-dependent 1.49E-04| 13
2 regulation of biological process 1.73E-04| 13
2 regulation of glycogen biosynthetic process 1.10E-03 2
3 biological regulation 9.67E-09| 34
3 regulation of cyclin-dependent protein kinase activity 3.62E-08 6
3 regulation of catalytic activity 1.47E-07 8
3 regulation of kinase activity 1.08E-06 6
3 interphase of mitotic cell cycle 9.08E-05 8
4 regulation of nucleobase, nucleoside, nucleotide anceimatid metabolic process5.31E-06| 17
4 regulation of metabolic process 5.55E-06| 19
4 DNA replication 9.18E-06 9
4 G1/S-specific transcription in mitotic cell cycle 1.05E-05 4
4 transcription 1.29E-05| 19
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4.5 Conclusions

4.5 Conclusions

Learning of large-scale regulatory networks is an impdréand challenging problem
in bioinformatics. Although integrative analysis is pr@ing in extracting deeper in-
sights into the regulatory mechanism from diverse datacasyrcurrent methods are
either bounded by the computational costs of microarrag-ts@ries analysis, or the
difficulties of adapting to new data sources.

To address these issues, we proposed in this chapter a Bayggsm fields method
(BRFs) for integrative analysis of diverse genomic datathk experiments on both
synthetic and biological networks, BRFs shows supericioperance. The success of
BRFs is a direct result of the inherent elegant yet straaghihrd Bayesian integrative
framework. Its flexibility enables unlimited heterogensalata types to be integrated
in a stochastic manner by a Gibbs sampler to facilitate robstmation. As previ-
ously addressed, fllerent data are of various formats and sparsity. BRFs progsaga
through modelling the two distributions in the availabléadsets without resorting to
accounting for missing data, thus is motiféeetive. In particular, the random fields
component introduces a known feature of gene network farrate modelling.

We are aware of the limitation of graphical Gaussian mggal$ial correlation that
in theory it is not as powerful as dynamic Bayesian netwogg@aches when there
are non-linear fects present in the data. However, given the paucity of sesrgiail-
able and the large scale of network, it is impossible for dutler Bayesian inference

with time-series data.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

This thesis is focused on applying innovative statisticidience methodologies to ge-
nomics research supported by high-throughput bioteclgiedo This multidisciplinary
research area facilitates progress in not just computensej but also statistics, and
molecular biology. Therefore, the main thread of this thésthat applications devel-
oped for genomics research and statistical inference tggbs can be synergistic and
pursue advancements together.

The main contributions of this thesis are summarised asvisll

e Proposing a tight clustering method based on partial mixtoodel to address
the need of obtaining tighter and therefore more biologyaaleaningful gene

clusters.

e Proposing a GO-driven clustering validation index that oy makes full use
of GO annotation information but also systematically ta&€¥s structure infor-

mation into account.

e Proposing a gene regulatory network inference method tcenrakgrative in-
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5.1 Conclusions

ference from multiple data sources with increased predictccuracy.

In their individual research fields, these proposed methodge research gaps in the

literature, as elaborated in the following sections, $&i1.1t05.1.3

5.1.1 Partial Mixture Model Tight Clustering

In Chapter 2, tight clustering was achieved based on thebflgyiof partial mixture
model and the robustness of the minimum distance estinfateviously, partial mix-
ture model was known to be capable of solving problems fordomensional data. In
fact, one problem with the classical partial mixture modethat it cannot fit data of
more than 7 data pointd17. In Chapter 2, a partial mixture model was extended to
be used on high dimensional data by integrating it with angplegression model. By
partial modelling, the mixture model is allowed to find theecoomponent in the data.
On the other hand, the unsupervised manner of the propostddie its selection of
cluster number makes it a powerful tool for clustering gexgession data.

In the experiments reported in Chapter 2, the proposed itlgowas validated
and its clustering outcomes including both gene clustets sattered genes were
explained with the help of various biological resources.c&ese of the incomplete
biological knowledge, no conclusion can be drawn by mereiymgaring clustering
results with known measures from the biological literatureerefore, besides using
a data-driven index, GO enrichment analysis was appliedaalustering outcomes.
From current knowledge, it is proved that the proposed eflusj method can help
separate groups of genes with similar functions, while ngpokhesis can be obtained
by exploring the scattered genes. Findings from this st ibeen published in two

papers 155 157].
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5.1 Conclusions

As a result, this chapter provides an excellent example oégxpression data
mining by combining machine learning techniques and bickignowledge. Further,
the tight clustering method can be applied to other areagéaire outlier detection
and tightly correlated data points, such as neural sigmalgssing and image segmen-
tation. Gene annotations help reveal new hypothesis akfigen the inference of the
scattered genes. One concern about the Gene Ontology iarealglsgene annotations
is that many genes and their functions are still unknown orlgainderstood. It is our
hope that through clustering, new understanding abou¢ theses can be introduced to
genomics research. Itis also this ambition that inspire®ad@ven validation method

proposed in Chapter 3.

5.1.2 Clustering Validation Using Gene Ontology

In Chapter 3, a literature review revealed that existing @Wen validation methods
either fail to achieve power when facing the redundant amdpdex structure of GO,
or tend to ignore the intrinsic properties of GO categorasthe experimental and
analytical results reported respectively in Sect®B and3.3. Assessing clustering
quality with existing biological knowledge that is manyatiurated into biological
databases is a promising direction, however, specialtaitehas to be paid not only
because of the complex structure and unique features of @albo because the
biological information in GO is still noisy, incomplete asdmetimes even erroneous.
To take the structure information in GO into account and nfakeise of GO an-
notations, two clustering validation indices and a combimelex which apply graph
theory and theory of hypothesis testing were proposed irpt&h&. In particular, the

Functional Compactness measure and Functional Similar@gsure can be used for
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5.1 Conclusions

evaluating how closely genes within a cluster are relatedaich other and finding
commonality between two clusters. These indices not oridg tato account the in-
trinsic properties of GO categories, but also integratermation from GO'’s graphical
structure.

The proposed GO-driven indices achieve robustness to moz® using a pooling
technique, as experimentally proven in the comparativeexyents. In these experi-
ments that are designed to test various validity indicess&iency, accuracy and dis-
criminability, the proposed WB index demonstrated supgy@formance throughout.
In summary, this chapter provides excellent examples ofoitkpy GO information
to facilitate integrative analysis of experimental resw@hd existing knowledge, and
further providing quantitative supports for validationdies. As a result, the method
has been published as a conference pal&]|[and a journal paper is currently in peer
review.

Statistical clustering is an active research area, whichsean many advances in
recent years. In contrast, biological evidences on evermib&t well-studied organ-
ism are accumulated and organised into databases only rgioeptly. Therefore, it
is preferable to process experimental data sets with patestst methods and sys-
tematically compare results with known biological facts few knowledge discov-
ery. Indeed, it is the contradiction between statisticalifigs and current biological
knowledge that stimulates interests and propels develofsmethe post-genome era.
Results from biological validation, especially for lesqatated and higher eukaryotic
organism, need to be carefully analysed and interpreteth, asithe case drabidop-

sis Thalianain Section3.5.1.2

150
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5.1.3 Transcriptional Regulatory Network Reconstruction

To address the many issues in reconstructing transcridti@gulatory networks, as
raised in Sectiorl.2.3 a Bayes Random Fields approach for transcriptional regula
tory network reconstruction was presented in Chapter 4hWiGibbs sampler, the
approach enjoys rigorous inference and robust analysis facge-scale genomic data
whilst minimising the influence of inherent noise.

The proposed method's flexibility benefits from a full Bayasroutine which en-
ables integrative analysis of a wide range of data sour¢esnlbe easily adapted to
new data sources, yet remairfB@ent enough to facilitate large-scale analysis for dis-
covering relevant network architecture. This is achieveditst providing inference
results for the high-dimensional gene expression data taddeded into the integra-
tive system. The time series inference method is selecteeldban its experimentally
proven suitability for microarray data. Moreover, the tighustering method proposed
in Chapter 2 is integrated in the random fields component fmsa a modular con-
straint on the resultant network, so as to introduce a moidyl@ature of biological
networks.

In comparison to the many works on extensive network recocison for the
whole organism, the proposed probabilistic network infeeeapproach integrates ev-
idence from a diversity of resources in a seamless and catheranner. It identifies
network scé&old on a context specific level, as it is shown in the experineneveal

cell-cycle relevant subnetwork. As a result, this work hasrbpublished as a journal

paper [L5§.
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5.2 Future Research

Significant breakthroughs in biotechnology in recent ybarge the potential of bring-
ing the genomics research to public health care. For exarmlecost sequencing
tools may enable genetic tests on a clinical level, whichravelutionary not only in
discovery of genetic disposition to a certain disease, lsat ia making personalised
medicine possibled2]. Drugs and drug combinations designed with respect to #le p
tients’ genotype can be optimised to ensure maximéinaey with minimal adverse
effects.

The major obstacle in this field is still the incomplete ursi@nding in functional
genomics. While the rapid development of high-throughpatdzhnology is mak-
ing large amount of genomic data available, there is a lacoftivare and genomic
knowledge for &ective data analysis. Enormous amounts of the resulting foamn
high-throughput biotechnology have drawn attentions & lioinformatics commu-
nity. Innovative and objective inference methods are utgerquired in genomics
research to reveal the mechanism underneath complex mal@ystems.

Looking forward, on the basis of current research progmessainformatics, con-
tinuous dforts are needed in designing computational techniques evelaping ana-
lytical software to help consolidate the foundation of fiimeal genomics. Among the
many features these techniques should possess, robusinasise in genomic data
and flexibility in the inference procedure are the key. Inrikar future, the following

research proposals can be considered.
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5.2 Future Research

5.2.1 Inferring Causal Relations from Large-scale Gene Exes-

sion Data

During the reconstruction of large-scale gene regulat@tyvarks, as described in
Chapter 4, infficiency of even some of the most popular methods in time saries
ference is found. Identifying regulatory relationshipsviEen genes based on their
expression time series is essentially equivalent to giyamgi causal relations between
time series. Therefore, many existing methods for learnagsal relations have been
adapted to this field. Some methods use Granger causalityd statistical technique
for causal inference well known in economics3] provides a good review on cur-
rent network reconstruction methods based on gene expredata. However, simple
adaptations of existing time series inference method$yrateceed, both because of
the small sample size and the large number of variables iroariay gene expression
time series.

Moreover, resulting large-scale network from the BRFs métbroposed in Chap-
ter 4 needs to be further refined into a directed form, so taegulatory mechanism
can be revealed. Combining these two issues, current eddihe series inference
methods should be evaluated to observe their performaneeiaarray data or to
discover the intrinsic problems that causes theiffioency. In this way, new method
targeted on these problems may be found and tested. As thstéips inference tech-
niques such as graphical Gaussian models and dynamic Bayestworks need to be
implemented and tested. When facing the scale of microayeag expression data,

efficiency is the key to a successful analysis tool.
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5.2 Future Research

5.2.2 GO-driven Validity Index for Regulatory Network Infe rence

Methods

Biological annotation data can be of great help not only inegelustering validations,
but also in validating gene network inference results. Fraruary 2009, regulatory
relationships between GO terms will be implemented in GA¢lwmake it potentially
promising for new, quantitative validity index for reguway network inference meth-
ods. Although, in some cases, the accuracy and completehgease annotation is by
no means dficient, these annotation can serve as useful prior knowlémgealida-
tion. This can be a new line of investigations in the nearrittHowever, there are
two issues that researchers should take into account.

First, the regulatory relationships will be implementedtlve BP ontology, the
MF ontology, and between the BP and MF ontologies. This meélaese two on-
tologies are no longer strictly independent. Second, etguy relationships will be
presented as three types of relationships: ‘regulatessitively_regulates’ and ‘neg-
atively regulates’ relationships. They provide descriptions fdefiactions between
biological processes, molecular functions or biologiazhlgies. While the addition
of these relationships improves the ability of the ontolégyepresent biology com-
pletely and accurately, an implication of the change is thiatre tools can no longer
ignore GO relationship type. The tools also must be comleatilith inter-ontology

links between GO categories.

5.2.3 Combined Analysis of DNA Sequence and Microarray Data

By jointly modelling diverse types of data, additional igisi into complex biology

systems may be gained. On the basis of the BRFs integraginesfivork and the patrtial
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mixture model clustering method, sequence and gene expnedata can be jointly
modelled to form gene clusters that simultaneously maxrf@ature cardinality from
both data sources.

In this way, behaviour changes in gene expression can baiaegpl by common
regulatory mechanisms at the transcriptional level. Atke, results from combina-
tory analysis will not only help identify combinatorial neigtion relationships among
genes, but also provide insights into the regulatory meishafor individual genes. A
promising direction is to use reliable multi-objective iopsation techniques in ma-
chine learning. From the machine learning point of views firioblem is essentially a
multi-objective optimisation problem. A solution shouldba/ one to counterbalance
the bias from diterent objectives through the simultaneous maximisatiofeature
cardinality.

To conclude, a fundamental problem for applying computetionethodologies
to functional genomics is, that the attributes of genomi@abo not fit the assump-
tions classical inference techniques often make. Obgeatiference methods are then
needed, both to design suitable models for genomic data @apdovide robust in-
ference procedure against biological noise. Meanwhilghihoughtput technologies
supporting functional genomics is rapidly evolving. Adeaments in biotechnologies
require innovative and powerful analytical software to trrev demands on a regular
basis.

Therefore, it is essential for researchers to keep up wefakt pace and design
new inference methods to fulfill the requirements from geicatata. Methods should
not only provide robustness to noise, flexibility in capbgrarbitrary, overlapping and
agglomerative attributes of the genomic data, but also irenmanputationally ficient

enough for the large-scale nature of data. The lack of bic&ground truth even
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in the most well-studied organism means that results gdno@d computational anal-
ysis tools need to be interpreted carefully in order to draliable conclusions and
validations. Meanwhile, just as inspirations for this fielh be gained from other
disciplines, insights gained from research on complexagiichl systems may in turn

contribute to applications in other scientific fields.
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Appendix A

A.1 Theoretical Comparison between MDE and MLE

Both minimum distance estimator and maximum likelihoodneator belong to the
Minimum distance (MD) family. Given the parameters vectbinterestd, € ® where
O is the set of possible parameter values, the aim of MD estire@an be generalised

as the minimisation of a criterion function
F(6) = 9(6)Dw(6). (A.1)

whered(#) is a function of the datg that will verify §(6,) — 0, andD,,(0) being a
weighted distance matrix. Depending on the choicg(@), different estimators can be
generated.

In particular, a minimum divergence estimator, which ip@yates minimum dis-
tance and maximum likelihood, is proposef] &s an alternative to non-parametric
density estimation. Density-based minimum divergencehous include those es-
timate parameters through minimising some pre-definedrgiveee between the as-

sumed model density and the true model density underlyiaglttia, e.g. maximum
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A.2 Mean Integrated Squared Error

likelihood method and minimum chi-squared method. Thedah is given by

6 = arg mirf f F(x10) T dx l+“Zf( 101, (A.2)

with a metaparameter > 0. MDE corresponds ta = 1 while MLE corresponds to

a — 0.

Examples of the two estimation criteria for normal denity N(u, o%) are

n
fvLe = arg rr)laxz log ¢(Xi|u, o72), (A.3)
=)

fimoe = arg mlr(— - Z B(xlu, ). (A4)

While the aim of MDE is to maximise the sum of the densities B\Mties to maximise

the product of the densities.

A.2 Mean Integrated Squared Error

For analysing more than one dataset, the Mean Integratear&tjiError (MISE) is a
more appropriate error criteria for the kernel densityreatbr [L12. Let f(x) be an

estimator of the density functiof(x) givenn samplesq,i =1,2,...,n

MIS E(f(X)) = Ef[f(x) — f(¥)]?dx (A.5)
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A.2 Mean Integrated Squared Error

which, by changing the order of integration, is the integfathe mean squared error

(MSE):
MS K(f) = E(f — f)? = Var(f) + (Ef - f)2 (A.6)

Suppose& satisfyingf k(X)dx = 1 is the kernel for the kernel density estimator,

f(x) = r—11 D kn(x = %), (A7)
i=1

wherek;, = 1/hk(u/h), h being the bandwidth. Fronifi3 Section 2.3],

MS E(f) = %[(Kﬁ # ) = (kn * 1201 + [(xn * F)) — F(X)]%, (A.8)

with the convolution notation

(f+9)(¥) = f f(x=y)a(y)dy. (A.9)

These may be combined to give

MIS E(f) = if/<(x)2dx+(1—%) f(xh*f)z(x)dx—Zf(Kh*f)(x)f(x)dx+ff(x)zdx

nh
(A.10)

Thus by using Eg4.8), exact MISE expressions can be derived. For the Gaussian

mixture densities in E¢(13, MISE has the form:

MIS E(f) (A.11)

1 1
= +WT'[(1 - 2)Q, — 201 + Qo]W.
P [( n)z 1+ Qo)
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whereW is the vector for weight parametef3, is aK xK matrix with the element( j)
corresponding t@(ah2+"i2+"12)1/2(pi - uj). Eq.(A.11) entitles a rich family of Gaussian
mixture models to be estimated. The first item in Bgl{l) does not change when
minimising MIS E. Therefore we obtain a new criterion for model fitting witlspect

to mean integrated squared error

6 = argminMIS E(f)

= arg ngir[WT[(l —~ %)92 — 20 + Qo] W. (A.12)
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Appendix B

By the standard graphical theory, affigent way of obtaining partial correlation ma-
trix is through the inverse of covariance or correlation nmxgtl2]. However, classi-
cal time series analysis techniques are not readily agpéda transciptomic data, in
which the number of data pointsfar exceeds the sample sizesince in this case the
sample covariance and correlation matrices are not pebitdefinite. Recently, an
efficient way for computing partial correlation was proposedubing only thet — 1
eigenvectors corresponding to the 1 non-zero eigenvalues of the covariance matrix
[83]. Such a dimension reconstruction method is popular inadigrocessing commu-

nity and known to be robust against noise.

B.1 Efficient Computation of Partial Correlation

This section describes arfieient computation method of partial correlation when
the number of data points far exceed the sample sizgi.e. n > t. In the BRFs
framework, it is proposed to use partial correlation meagdhe inference result from
time series data.

By removing the linear fects from the rest of population, partial correlation can
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B.1 Efficient Computation of Partial Correlation

indicate whether a pair of variables directly interact waetich other. Because of its
efficiency, partial correlation has been the foundation fophieal Gaussian models.
The aim is to set up a graphical interaction mo@ek (V, E) with the verticegV} as
the components of the series and ed@d&sdenoting pair-wise interactions. grafh
have such property

E(L ) <SG oy Ly, (B.1)

Let Y.i; = {wlk # 1, j}, the linear &ects ofY_j; is removed fromy; by finding the

parameter se% = (uj, ;) such that

2
0 = arg minE {yi(t) — Hi— Z Ki(t — U)Y—ij(u)} : (B.2)

u

The residuals of such regression is denoteg.al the same way we defing. Thus
the correlation between residualsande; is the correlation between variablgsand
y;j conditioned on the others, i.e., partial correlation bemye andy;. A direct inter-
action betweery; andy; exists if and only if their partial correlation is signifidn
different from zero. When patrtial correlation is applied formmak reconstruction, it
provides solid mathematical foundation for finding meafuhmteractions. It leads to

the definition of the graph
E(, j) € G & cor(e, €) = 0. (B.3)

An efficient way of obtaining partial correlation matrix, by tharstiard graphical the-
ory, is through the inverse of covariance or correlationrirgtl2]. Based on this
theory, partial spectral coherence was proposed for fremyuéomain analysis of time

series 12] and it can be obtained by the inverse of the spectral ma28k [However,
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B.1 Efficient Computation of Partial Correlation

these classical time series analysis techniques are rdityr@gplicable to transcip-
tome data, where the number of data poimfar exceed the sample siza.e. n > t.
Since in this case the sample covariance and correlationoasitare not positively
definite. Many &orts were spent on exploiting this field, either by restnigtinfer-
ence to a small number of gendsify, or limiting partial codficient to limited order
[34, 149, i.e., computation is conditioned on only limited numbé&genes each time.
Sampling technique such as bootstrapping is also propdsksll in order to obtain
point estimates of partial correlation dheient. Recently, it was proved that the partial
correlation matrix maximises the entropy of interactiosteyn B3], and an éicient
computation of partial correlation was proposed by usinly tie t — 1 eigenvectors
corresponding to the— 1 non-zero eigenvalue83|. Such reconstruction method is
popular in signal processing community and known to be rbagainst small noise.
Let

V={veV,Cv= v} (B.4)

be the eigenvector of, and4;,i = 1,...,N be the eigenvalues. Since the spectral

decomposition of covariance matKixis

C = MAM, {(Ai} = A,. (B.5)

There are exactly — 1 non-zero eigenvalues, partial correlation matrix can dre c

structed in the non-zero eigenspace

P=C!'=(MAMYH?T=MAMT (B.6)

M is a matrix whose columns are made up of eigenvectpend A is a diagonal
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matrix whose diagonal elements are the corresponding efiezs, thereforeP can

be reconstructed using the 1 eigenvectors correspondingi{tty, Ao, ..., At_1}.
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