21 research outputs found

    Time-frequency analysis framework for understanding non-stationary and multi-scale characteristics of sea-level dynamics

    Get PDF
    Rising sea level caused by global climate change may increase extreme sea level events, flood low-lying coastal areas, change the ecological and hydrological environment of coastal areas, and bring severe challenges to the survival and development of coastal cities. Hong Kong is a typical economically and socially developed coastal area. However, in such an important coastal city, the mechanisms of local sea-level dynamics and their relationship with climate teleconnections are not well explained. In this paper, Hong Kong tide gauge data spanning 68 years was documented to study the historical sea-level dynamics. Through the analysis framework based on Wavelet Transform and Hilbert Huang Transform, non-stationary and multi-scale features in sea-level dynamics in Hong Kong are revealed. The results show that the relative sea level (RSL) in Hong Kong has experienced roughly 2.5 cycles of high-to-low sea-level transition in the past half-century. The periodic amplitude variation of tides is related to Pacific Decadal Oscillation (PDO) and El Niño-Southern Oscillation (ENSO). RSL rise and fall in eastern Hong Kong often occur in La Niña and El Niño years, respectively. The response of RSL to the PDO and ENSO displays a time lag and spatial heterogeneity in Hong Kong. Hong Kong's eastern coastal waters are more strongly affected by the Pacific climate and current systems than the west. This study dissects the non-stationary and multi-scale characteristics of relative sea-level change and helps to better understand the response of RSL to the global climate system

    Improving Urban Land Cover Classification in Cloud-Prone Areas with Polarimetric SAR Images

    No full text
    Urban land cover (ULC) serves as fundamental environmental information for urban studies, while accurate and timely ULC mapping remains challenging due to cloud contamination in tropical and subtropical areas. Synthetic aperture radar (SAR) has excellent all-weather working capability to overcome the challenge, while optical SAR data fusion is often required due to the limited land surface information provided by SAR. However, the mechanism by which SAR can compensate optical images, given the occurrence of clouds, in order to improve the ULC mapping, remains unexplored. To address the issue, this study proposes a framework, through various sampling strategies and three typical supervised classification methods, to quantify the ULC classification accuracy using optical and SAR data with various cloud levels. The land cover confusions were investigated in detail to understand the role of SAR in distinguishing land cover under different types of cloud coverage. Several interesting experimental results were found. First, 50% cloud coverage over the optical images decreased the overall accuracy by 10–20%, while the incorporation of SAR images was able to improve the overall accuracy by approximately 4%, by increasing the recognition of cloud-covered ULC information, particularly the water bodies. Second, if all the training samples were not contaminated by clouds, the cloud coverage had a higher impact with a reduction of 35% in the overall accuracy, whereas the incorporation of SAR data contributed to an increase of approximately 5%. Third, the thickness of clouds also brought about different impacts on the results, with an approximately 10% higher reduction from thick clouds compared with that from thin clouds, indicating that certain spectral information might still be available in the areas covered by thin clouds. These findings provide useful references for the accurate monitoring of ULC over cloud-prone areas, such as tropical and subtropical cities, where cloud contamination is often unavoidable

    Urbanization and Its Impacts on Land Surface Temperature in Colombo Metropolitan Area, Sri Lanka, from 1988 to 2016

    No full text
    Urbanization has become one of the most important human activities modifying the Earth’s land surfaces; and its impacts on tropical and subtropical cities (e.g., in South/Southeast Asia) are not fully understood. Colombo; the capital of Sri Lanka; has been urbanized for about 2000 years; due to its strategic position on the east–west sea trade routes. This study aims to investigate the characteristics of urban expansion and its impacts on land surface temperature in Colombo from 1988 to 2016; using a time-series of Landsat images. Urban land cover changes (ULCC) were derived from time-series satellite images with the assistance of machine learning methods. Urban density was selected as a measure of urbanization; derived from both the multi-buffer ring method and a gravity model; which were comparatively adopted to evaluate the impacts of ULCC on the changes in land surface temperature (LST) over the study period. The experimental results indicate that: (1) the urban land cover classification during the study period was conducted with satisfactory accuracy; with more than 80% for the overall accuracy and over 0.73 for the Kappa coefficient; (2) the Colombo Metropolitan Area exhibits a diffusion pattern of urban growth; especially along the west coastal line; from both the multi-buffer ring approach and the gravity model; (3) urban density was identified as having a positive relationship with LST through time; (4) there was a noticeable increase in the mean LST; of 5.24 °C for water surfaces; 5.92 °C for vegetation; 8.62 °C for bare land; and 8.94 °C for urban areas. The results provide a scientific reference for policy makers and urban planners working towards a healthy and sustainable Colombo Metropolitan Area

    GF-5 Hyperspectral Data for Species Mapping of Mangrove in Mai Po, Hong Kong

    No full text
    Hyperspectral data has been widely used in species discrimination of plants with rich spectral information in hundreds of spectral bands, while the availability of hyperspectral data has hindered its applications in many specific cases. The successful operation of the Chinese satellite, Gaofen-5 (GF-5), provides potentially promising new hyperspectral dataset with 330 spectral bands in visible and near infrared range. Therefore, there is much demand for assessing the effectiveness and superiority of GF-5 hyperspectral data in plants species mapping, particularly mangrove species mapping, to better support the efficient mangrove management. In this study, mangrove forest in Mai Po Nature Reserve (MPNR), Hong Kong was selected as the study area. Four dominant native mangrove species were investigated in this study according to the field surveys. Two machine learning methods, Random Forests and Support Vector Machines, were employed to classify mangrove species with Landsat 8, Simulated Hyperion and GF-5 data sets. The results showed that 97 more bands of GF-5 over Hyperion brought a higher over accuracy of 87.12%, in comparison with 86.82% from Hyperion and 73.89% from Landsat 8. The higher spectral resolution of 5 nm in GF-5 was identified as making the major contribution, especially for the mapping of Aegiceras corniculatum. Therefore, GF-5 is likely to improve the classification accuracy of mangrove species mapping via enhancing spectral resolution and thus has promising potential to improve mangrove monitoring at species level to support mangrove management

    New morphological features for urban tree species identification using LiDAR point clouds

    No full text
    Urban tree species identification is the basis for studying the urban-environment coordination mechanism at the species level. Although the gradual maturity of remote sensing data and related research including light detection and ranging (LiDAR) provides a good foundation for the realization of this technology, multiple reasons such as cost, data openness, study scope limitations, and weakness of traditional morphological features make such data still challenging to apply to subtropical urban trees with heterogeneous canopy structures and high biodiversity. To address the problem, we developed two large-scale LiDAR morphological features in this research by, 1) modifying the rotate image method based on the axisymmetric structure to make it easier to use, and 2) developing an innovative adaptive ellipsoid method to extract the canopy features of the non-axisymmetric structure effectively. We evaluated the ability of these two morphological features to describe 12 common subtropical urban tree (SUT) species in Hong Kong growing in urban parks and streets, obtaining an accuracy of 88%. And the advantages of the proposed method are demonstrated by comparison with existing LiDAR morphological features and mean decrease accuracy (MDA) analysis. Our results illustrated that the rotate image feature based on the axisymmetric structure did not perform as well as the adaptive ellipsoid feature based on the non-axisymmetric structure in SUT, and the combined application of these two new morphological features got further accuracy improvement. The method proposed in this study had significant advantages in terms of accuracy, the number of species included, and generalisation capability compared to existing studies on the identification of subtropical urban trees

    Improving urban impervious surface extraction by synergizing hyperspectral and polarimetric radar data using sparse representation

    No full text
    Accurate extraction of urban impervious surface (UIS) is essential for urban planning and environmental monitoring. However, multispectral remote sensing data for UIS extraction suffers from the inter-class spectral confusions, e.g. UIS and bare soil, and intra-class variations of sub-class UIS. Hyperspectral and full/dual-polarization synthetic aperture radar (full/dual PolSAR) data provide opportunities for reducing such confusions and have potential for fine UIS mapping, i.e., roads, buildings, and grounds. In this study, we first investigated the hyperspectral data (Gaofen-5) capability to reduce the intra/inter-class misclassification in comparison with multispectral data (Landsat-8). Then, we explored contributions of synergistically using full and dual PolSAR (ALOS-2 and Sentinel-1) with hyperspectral and multispectral data using optical-SAR sparse representation classification (OSSRC). Results showed that both the hyperspectral and the SAR polarization features helped better delineation between UIS and bare soil, and sub-class UIS (roads and buildings). The relative contribution of PolSAR was higher in multispectral data than in hyperspectral data, with full PolSAR contributed significantly. The combined hyperspectral and full PolSAR data using OSSRC delivered the best result, with an overall accuracy higher than 90%. The results indicate the promising capability of synergizing hyperspectral and full/dual PolSAR data for improving UIS extraction from advanced satellite data

    New two-step species-level AGB estimation model applied to urban parks

    No full text
    Aboveground biomass (AGB) estimation for urban parks has received less attention as an essential component of the global carbon cycle. Current studies focus on vast areas of natural or planted forests. The characteristics of these study areas make the use of homogenised vegetation grids (using remote sensing data) and plots (using field data) as the basic research unit a consensus. However, this data-level simplification can be significantly affected by buildings when applied to urban areas. Developing tree species identification methods based on remote sensing provides us with new ideas to explore urban AGB estimation methods at the species level. To this end, we developed a species-level AGB estimation model to address the AGB distribution in urban parks by combining multitemporal airborne light detection and ranging (LiDAR), optical remote sensing data, and field data from two urban parks in Hong Kong through a two-step strategy. First, we constructed optimal remote sensing feature-AGB mapping relationships for each sample species using sample data from the study area, the tropical allometric growth equation, and the five regression algorithms. We then explored a tree species identification method based on the annual vegetation phenological change index (AVPCI), which allowed us to quickly obtain species distribution maps for the study area. Combining these two steps allowed us to obtain AGB information for the study area based on species-level mapping relationships based on species distributions. In the model validation, the correlation between the estimated and true values of the remote sensing feature and AGB mapping relationship was 0.91, with a significantly lower normalised root mean square deviation (RMSE). The overall accuracy of the sample tree species identification was 87.5%, which was better than the results of existing studies. The final AGB obtained was also within the reasonable interval of existing studies. In addition, with the model proposed in this study, we noted that the super typhoon Mangkhut in 2018 reduced the AGB in the study area by 32.6% and demonstrated the significant underestimation of high-density urban areas in existing global biomass products. The model developed in this study addresses the problems of existing AGB estimation methods for urban vegetation represented by urban parks while effectively contributing to understanding AGB distribution and short-term carbon cycle dynamics in urban scenarios

    Quantifying Short-Term Urban Land Cover Change with Time Series Landsat Data: A Comparison of Four Different Cities

    No full text
    Short-term characteristics of urban land cover change have been observed and reported from satellite images, although urban landscapes are mainly influenced by anthropogenic factors. These short-term changes in urban areas are caused by rapid urbanization, seasonal climate changes, and phenological ecological changes. Quantifying and understanding these short-term characteristics of changes in various land cover types is important for numerous urban studies, such as urbanization assessments and management. Many previous studies mainly investigated one study area with insufficient datasets. To more reliably and confidently investigate temporal variation patterns, this study employed Fourier series to quantify the seasonal changes in different urban land cover types using all available Landsat images over four different cities, Melbourne, Sao Paulo, Hamburg, and Chicago, within a five-year period (2011⁻2015). The overall accuracy was greater than 86% and the kappa coefficient was greater than 0.80. The R-squared value was greater than 0.80 and the root mean square error was less than 7.2% for each city. The results indicated that (1) the changing periods for water classes were generally from half a year to one and a half years in different areas; and, (2) urban impervious surfaces changed over periods of approximately 700 days in Melbourne, Sao Paulo, and Hamburg, and a period of approximately 215 days in Chicago, which was actually caused by the unavoidable misclassification from confusions between various land cover types using satellite data. Finally, the uncertainties of these quantification results were analyzed and discussed. These short-term characteristics provided important information for the monitoring and assessment of urban areas using satellite remote sensing technology

    Community-based plant diversity monitoring of a dense-canopy and species-rich tropical forest using airborne LiDAR data

    No full text
    Tropical forests are widely regarded as the Earth’s most important ecosystems, yet they are severely threatened by anthropogenic disturbances. Rapid and extensive monitoring of forest structure and biodiversity is crucial for developing ecologically sound conservation and restoration strategies. Airborne light detection and ranging (LiDAR) can effectively monitor three-dimensional forest canopy structures. Traditionally, LiDAR-based plant diversity estimation has relied on individual tree-based and area-based approaches. However, these approaches face significant challenges in tropical forests due to their complex canopy structures and diverse plant compositions. Therefore, by proposing a novel community-based approach, this study aims to examine the relationship between field-derived biodiversity indices and LiDAR-derived canopy structural metrics of plant communities in a species-rich ForestGEO forest dynamic plot in tropical Hong Kong. Our goal is to determine whether canopy structural metrics extracted from airborne LiDAR data can serve as a robust and efficient alternative for expediting plant diversity monitoring in highly dense and diverse tropical forests. Our results indicate that an integration watershed segmentation technique (for automatic patch-scale plant community delineation), LiDAR-derived canopy structural metrics, and machine learning-based random forest regression analysis can provide accurate predictions of community-based species diversity indices. Among various diversity indices, species richness and the Shannon-Wiener index are most accurately estimated using LiDAR-derived metrics. This study reveals that species richness is predominantly influenced by the existence of multi-layered canopy structures, whereas the Shannon-Wiener index is associated with both multi-layered structures and canopy morphologies. Overall, our findings showcase the immense potential of airborne LiDAR data in advancing the monitoring of structure and biodiversity in dense-canopy and species-rich tropical forests in a spatially explicit manner

    Prevalence and Clinicopathologic Characteristics of the Molecular Subtypes in Malignant Glioma: A Multi-Institutional Analysis of 941 Cases

    No full text
    <div><p>Background</p><p>Glioblastoma can be classified into four distinct molecular subtypes (Proneural, Neural, Classical and Mesenchymal), based on gene expression profiling. This study aimed to investigate the prevalence, clinicopathologic features and overall survival (OS) of the four molecular subtypes among all malignant gliomas.</p><p>Methods</p><p>A total of 941 gene expression arrays with clinical data were obtained from the Rembrandt, GSE16011 and CGGA datasets. Molecular subtypes were predicted with a prediction analysis of microarray.</p><p>Results</p><p>Among 941 malignant gliomas, 32.73% were Proneural, 15.09% Neural, 19.77% Classical and 32.41% Mesenchymal. The Proneural and Neural subtypes occurred largely in low-grade gliomas, while the Classical and Mesenchymal subtypes were more frequent in high-grade gliomas. A survival analysis showed that the Proneural subtype displayed a good prognosis, Neural had an intermediate correlation with overall survival, Mesenchymal had a worse prognosis than Neural, and Classical had the worst clinical outcome. Furthermore, oligodendrocytomas were preferentially assigned to the Proneural subtype, while the Mesenchymal subtype included a higher percentage of astrocytomas, compared with oligodendrocytomas. Additionally, nearly all classical gliomas harbored EGFR amplifications. Classical anaplastic gliomas have similar clinical outcomes as their glioblastoma counterparts and should be treated more aggressively.</p><p>Conclusions</p><p>Molecular subtypes exist stably in all histological malignant gliomas subtypes. This could be an important improvement to histological diagnoses for both prognosis evaluations and clinical outcome predictions.</p></div
    corecore