6 research outputs found

    Blur Interpolation Transformer for Real-World Motion from Blur

    Full text link
    This paper studies the challenging problem of recovering motion from blur, also known as joint deblurring and interpolation or blur temporal super-resolution. The remaining challenges are twofold: 1) the current methods still leave considerable room for improvement in terms of visual quality even on the synthetic dataset, and 2) poor generalization to real-world data. To this end, we propose a blur interpolation transformer (BiT) to effectively unravel the underlying temporal correlation encoded in blur. Based on multi-scale residual Swin transformer blocks, we introduce dual-end temporal supervision and temporally symmetric ensembling strategies to generate effective features for time-varying motion rendering. In addition, we design a hybrid camera system to collect the first real-world dataset of one-to-many blur-sharp video pairs. Experimental results show that BiT has a significant gain over the state-of-the-art methods on the public dataset Adobe240. Besides, the proposed real-world dataset effectively helps the model generalize well to real blurry scenarios

    A novel mutation in exon 11 of COMP gene in a Chinese family with pseudoachondroplasia

    No full text
    Pseudoachondroplasia (PSACH) is a relatively common skeletal dysplasia characterized by disproportionate short stature, joint laxity, early-onset osteoarthrosis, and dysplasia of the spine, epiphysis, and metaphysis. It is known as an autosomal dominant disease which results exclusively from mutations in the gene for Cartilage Oligomeric Matrix Protein (COMP). We have identified a five year old Chinese boy who was diagnosed as pseudoachondroplasia according to clinical manifestations and X-ray symptoms. His mother seems like another effected individual because of the apparent short stature. Genomic DNA was extracted from peripheral blood lymphocytes. DNA sequencing analysis of the COMP gene revealed a heterozygous mutation (c.1219 T > C,p.Cys407Arg) in the patient. His mother was also affected with the same genetic change. Mutations in COMP gene is proved to change the Cartilage Oligomeric Matrix Protein. This missense mutation (c.1219 T > C) has not been reported before and it is not belongs to polymorphism sites. Our results extend the spectrum of mutations in COMP gene leading to pseudoachondroplasia. Keywords: COMP, Novel mutation, Skeletal dysplasia, Pseudoachondroplasia, Therap

    Assessor360: Multi-sequence Network for Blind Omnidirectional Image Quality Assessment

    Full text link
    Blind Omnidirectional Image Quality Assessment (BOIQA) aims to objectively assess the human perceptual quality of omnidirectional images (ODIs) without relying on pristine-quality image information. It is becoming more significant with the increasing advancement of virtual reality (VR) technology. However, the quality assessment of ODIs is severely hampered by the fact that the existing BOIQA pipeline lacks the modeling of the observer's browsing process. To tackle this issue, we propose a novel multi-sequence network for BOIQA called Assessor360, which is derived from the realistic multi-assessor ODI quality assessment procedure. Specifically, we propose a generalized Recursive Probability Sampling (RPS) method for the BOIQA task, combining content and detailed information to generate multiple pseudo viewport sequences from a given starting point. Additionally, we design a Multi-scale Feature Aggregation (MFA) module with Distortion-aware Block (DAB) to fuse distorted and semantic features of each viewport. We also devise TMM to learn the viewport transition in the temporal domain. Extensive experimental results demonstrate that Assessor360 outperforms state-of-the-art methods on multiple OIQA datasets

    Bringing Rolling Shutter Images Alive with Dual Reversed Distortion

    Full text link
    Rolling shutter (RS) distortion can be interpreted as the result of picking a row of pixels from instant global shutter (GS) frames over time during the exposure of the RS camera. This means that the information of each instant GS frame is partially, yet sequentially, embedded into the row-dependent distortion. Inspired by this fact, we address the challenging task of reversing this process, i.e., extracting undistorted GS frames from images suffering from RS distortion. However, since RS distortion is coupled with other factors such as readout settings and the relative velocity of scene elements to the camera, models that only exploit the geometric correlation between temporally adjacent images suffer from poor generality in processing data with different readout settings and dynamic scenes with both camera motion and object motion. In this paper, instead of two consecutive frames, we propose to exploit a pair of images captured by dual RS cameras with reversed RS directions for this highly challenging task. Grounded on the symmetric and complementary nature of dual reversed distortion, we develop a novel end-to-end model, IFED, to generate dual optical flow sequence through iterative learning of the velocity field during the RS time. Extensive experimental results demonstrate that IFED is superior to naive cascade schemes, as well as the state-of-the-art which utilizes adjacent RS images. Most importantly, although it is trained on a synthetic dataset, IFED is shown to be effective at retrieving GS frame sequences from real-world RS distorted images of dynamic scenes. Code is available at https://github.com/zzh-tech/Dual-Reversed-RS.Comment: ECCV2022 Ora
    corecore