2 research outputs found

    Significantly Enhanced Photocatalytic Performance of the g‑C<sub>3</sub>N<sub>4</sub>/Sulfur-Vacancy-Containing Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> Heterostructure for Photocatalytic H<sub>2</sub> and H<sub>2</sub>O<sub>2</sub> Generation by Coupling Defects with Heterojunction Engineering

    No full text
    Light-driven splitting of water to produce H2 and reduction of molecular oxygen to synthesize H2O2 from water are the emerging environmentally friendly methods for converting solar energy into green energy and chemicals. In this paper, vacancy defect and heterojunction engineering effectively adjusted the conduction band position of Zn3In2S6, enriched the electron density, broadened the optical absorption range, increased the specific surface area, and accelerated the charge carrier transfer and separation of g-C3N4/sulfur-vacancy-containing Zn3In2S6 (CN/Vs-ZIS) heterostructures. As a result, all of the CN/Vs-ZIS heterostructures possessed greatly enhanced photocatalytic activities and the optimized sample 2CN/Vs-ZIS exhibited the highest visible-light photocatalytic performance. The rate of generation of H2 of 2CN/Vs-ZIS under visible light (λ > 420 nm) was 6.55 mmol g–1 h–1, which was 1.76 and 6.06 times higher than those of Vs-Zn3In2S6 and g-C3N4, respectively, and the apparent quantum yield (AQY) was 18.6% at 420 nm. Meanwhile, the 2 h yield of H2O2 of 2CN/Vs-ZIS was 792.02 μM, ∼4.72 and ∼6.04 times higher than those of pure Vs-Zn3In2S6 and g-C3N4, respectively. The enhanced reaction mechanisms for the production of photocatalytic H2 and H2O2 were also investigated. This work undoubtedly demonstrates that the synergistic effects of defect and heterojunction engineering will be the great promise for improving the photocatalytic efficiency of Zn3In2S6-based materials

    Fe<sub>3</sub>C/Fe/C Magnetic Hierarchical Porous Carbon with Micromesopores for Highly Efficient Chloramphenicol Adsorption: Magnetization, Graphitization, and Adsorption Properties Investigation

    No full text
    Here, the magnetic hierarchical porous carbon (MHPC) with micromesopores was first prepared using ethylenediaminetetraacetic acid tripotassium (EDTA-3K) and iron nitrate by simultaneous magnetization/activation method. The optimal product was MHPC-20 with a high graphitization, which possessed a large <i>S</i><sub>BET</sub> (1688 m<sup>2</sup> g<sup>–1</sup>) and saturation magnetization (3.679 emu g<sup>–1</sup>). As expected, MHPC-20 had a very high maximum adsorption capacity (534.2 mg g<sup>–1</sup>) toward chloramphenicol (CAP) from water solution at 298 K with a positive correlation between <i>S</i><sub>BET</sub> and adsorption amount. Additionally, MHPC-20 had a fast adsorption kinetic, only 250 min, and isothermal and kinetics data were well fitted by Langmuir and pseudo-second-order kinetic models, respectively. Moreover, the effect of ion strength, solution pH, and humic acid on CAP adsorption onto MHPC-20 were investigated, indicating a better stability. Besides, MHPC-20 showed good reusability and excellent magnetic separation performance, which implied MHPC-20 as a candidate could be applied in various complex wastewater environments
    corecore