223 research outputs found

    Fractional Skipping: Towards Finer-Grained Dynamic CNN Inference

    Full text link
    While increasingly deep networks are still in general desired for achieving state-of-the-art performance, for many specific inputs a simpler network might already suffice. Existing works exploited this observation by learning to skip convolutional layers in an input-dependent manner. However, we argue their binary decision scheme, i.e., either fully executing or completely bypassing one layer for a specific input, can be enhanced by introducing finer-grained, "softer" decisions. We therefore propose a Dynamic Fractional Skipping (DFS) framework. The core idea of DFS is to hypothesize layer-wise quantization (to different bitwidths) as intermediate "soft" choices to be made between fully utilizing and skipping a layer. For each input, DFS dynamically assigns a bitwidth to both weights and activations of each layer, where fully executing and skipping could be viewed as two "extremes" (i.e., full bitwidth and zero bitwidth). In this way, DFS can "fractionally" exploit a layer's expressive power during input-adaptive inference, enabling finer-grained accuracy-computational cost trade-offs. It presents a unified view to link input-adaptive layer skipping and input-adaptive hybrid quantization. Extensive experimental results demonstrate the superior tradeoff between computational cost and model expressive power (accuracy) achieved by DFS. More visualizations also indicate a smooth and consistent transition in the DFS behaviors, especially the learned choices between layer skipping and different quantizations when the total computational budgets vary, validating our hypothesis that layer quantization could be viewed as intermediate variants of layer skipping. Our source code and supplementary material are available at \link{https://github.com/Torment123/DFS}

    Dual Dynamic Inference: Enabling More Efficient, Adaptive and Controllable Deep Inference

    Full text link
    State-of-the-art convolutional neural networks (CNNs) yield record-breaking predictive performance, yet at the cost of high-energy-consumption inference, that prohibits their widely deployments in resource-constrained Internet of Things (IoT) applications. We propose a dual dynamic inference (DDI) framework that highlights the following aspects: 1) we integrate both input-dependent and resource-dependent dynamic inference mechanisms under a unified framework in order to fit the varying IoT resource requirements in practice. DDI is able to both constantly suppress unnecessary costs for easy samples, and to halt inference for all samples to meet hard resource constraints enforced; 2) we propose a flexible multi-grained learning to skip (MGL2S) approach for input-dependent inference which allows simultaneous layer-wise and channel-wise skipping; 3) we extend DDI to complex CNN backbones such as DenseNet and show that DDI can be applied towards optimizing any specific resource goals including inference latency or energy cost. Extensive experiments demonstrate the superior inference accuracy-resource trade-off achieved by DDI, as well as the flexibility to control such trade-offs compared to existing peer methods. Specifically, DDI can achieve up to 4 times computational savings with the same or even higher accuracy as compared to existing competitive baselines
    • …
    corecore