263 research outputs found
Intrinsic energy conversion mechanism via telescopic extension and retraction of concentric carbon nanotubes
The conversion of other forms of energy into mechanical work through the
geometrical extension and retraction of nanomaterials has a wide variety of
potential applications, including for mimicking biomotors. Here, using
molecular dynamic simulations, we demonstrate that there exists an intrinsic
energy conversion mechanism between thermal energy and mechanical work in the
telescopic motions of double-walled carbon nanotubes (DWCNTs). A DWCNT can
inherently convert heat into mechanical work in its telescopic extension
process, while convert mechanical energy into heat in its telescopic retraction
process. These two processes are thermodynamically reversible. The underlying
mechanism for this reversibility is that the entropy changes with the
telescopic overlapping length of concentric individual tubes. We find also that
the entropy effect enlarges with the decreasing intertube space of DWCNTs. As a
result, the spontaneously telescopic motion of a condensed DWCNT can be
switched to extrusion by rising the system temperature above a critical value.
These findings are important for fundamentally understanding the mechanical
behavior of concentric nanotubes, and may have general implications in the
application of DWCNTs as linear motors in nanodevices
Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators
While maximizing deep neural networks' (DNNs') acceleration efficiency
requires a joint search/design of three different yet highly coupled aspects,
including the networks, bitwidths, and accelerators, the challenges associated
with such a joint search have not yet been fully understood and addressed. The
key challenges include (1) the dilemma of whether to explode the memory
consumption due to the huge joint space or achieve sub-optimal designs, (2) the
discrete nature of the accelerator design space that is coupled yet different
from that of the networks and bitwidths, and (3) the chicken and egg problem
associated with network-accelerator co-search, i.e., co-search requires
operation-wise hardware cost, which is lacking during search as the optimal
accelerator depending on the whole network is still unknown during search. To
tackle these daunting challenges towards optimal and fast development of DNN
accelerators, we propose a framework dubbed Auto-NBA to enable jointly
searching for the Networks, Bitwidths, and Accelerators, by efficiently
localizing the optimal design within the huge joint design space for each
target dataset and acceleration specification. Our Auto-NBA integrates a
heterogeneous sampling strategy to achieve unbiased search with constant memory
consumption, and a novel joint-search pipeline equipped with a generic
differentiable accelerator search engine. Extensive experiments and ablation
studies validate that both Auto-NBA generated networks and accelerators
consistently outperform state-of-the-art designs (including
co-search/exploration techniques, hardware-aware NAS methods, and DNN
accelerators), in terms of search time, task accuracy, and accelerator
efficiency. Our codes are available at: https://github.com/RICE-EIC/Auto-NBA.Comment: Accepted at ICML 202
Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures
Graphene, as a passivation layer, can be used to protect the black phosphorus
from the chemical reaction with surrounding oxygen and water. However, black
phosphorus and graphene heterostructures have low efficiency of heat
dissipation due to its intrinsic high thermal resistance at the interfaces. The
accumulated energy from Joule heat has to be removed efficiently to avoid the
malfunction of the devices. Therefore, it is of significance to investigate the
interfacial thermal dissipation properties and manipulate the properties by
interfacial engineering on demand. In this work, the interfacial thermal
conductance between few-layer black phosphorus and graphene is studied
extensively using molecular dynamics simulations. Two critical parameters, the
critical power Pcr to maintain thermal stability and the maximum heat power
density Pmax with which the system can be loaded, are identified. Our results
show that interfacial thermal conductance can be effectively tuned in a wide
range with external strains and interracial defects. The compressive strain can
enhance the interfacial thermal conductance by one order of magnitude, while
interface defects give a two-fold increase. These findings could provide
guidelines in heat dissipation and interfacial engineering for thermal
conductance manipulation of black phosphorus-graphene heterostructure-based
devices.Comment: 33 pages, 22 figure
NetDistiller: Empowering Tiny Deep Learning via In-Situ Distillation
Boosting the task accuracy of tiny neural networks (TNNs) has become a
fundamental challenge for enabling the deployments of TNNs on edge devices
which are constrained by strict limitations in terms of memory, computation,
bandwidth, and power supply. To this end, we propose a framework called
NetDistiller to boost the achievable accuracy of TNNs by treating them as
sub-networks of a weight-sharing teacher constructed by expanding the number of
channels of the TNN. Specifically, the target TNN model is jointly trained with
the weight-sharing teacher model via (1) gradient surgery to tackle the
gradient conflicts between them and (2) uncertainty-aware distillation to
mitigate the overfitting of the teacher model. Extensive experiments across
diverse tasks validate NetDistiller's effectiveness in boosting TNNs'
achievable accuracy over state-of-the-art methods. Our code is available at
https://github.com/GATECH-EIC/NetDistiller
- …