119 research outputs found

    New approach to optimize mechanical properties of the immiscible polypropylene/poly (Ethylene Terephthalate) blend : effect of shish-kebab and core-shell structure

    Get PDF
    Improving the mechanical properties of immiscible PP/PET blend is of practical significance especially in the recycling process of multi-layered plastic solid waste. In this work, a multi-flow vibration injection molding technology (MFVIM) was hired to convert the crystalline morphology of the PP matrix from spherulite into shish-kebab. POE–g–MA was added as compatibilizer, and results showed that the compatibilization effect consisted in the formation of a core-shell structure by dispersing the POE–g–MA into the PP matrix to encapsulate the PET. It was found that the joint action of shish-kebab crystals and spherical core-shell structure enabled excellent mechanical performance with a balance of strength and toughness for samples containing 10 wt % PET and 4 wt % POE–g–MA, of which the yield strength and impact strengths were 50.87 MPa and 13.71 kJ/m2, respectively. This work demonstrates a new approach to optimize mechanical properties of immiscible PP/PET blends, which is very meaningful for the effective recycling of challenging plastic wastes

    Effects of phase morphology on mechanical properties : oriented/unoriented PP crystal combination with spherical/microfibrillar PET phase

    Get PDF
    In situ microfibrillation and multiflow vibrate injection molding (MFVIM) technologies were combined to control the phase morphology of blended polypropylene (PP) and poly(ethylene terephthalate) (PET), wherein PP is the majority phase. Four kinds of phase structures were formed using different processing methods. As the PET content changes, the best choice of phase structure also changes. When the PP matrix is unoriented, oriented microfibrillar PET can increase the mechanical properties at an appropriate PET content. However, if the PP matrix is an oriented structure (shish-kebab), only the use of unoriented spherical PET can significantly improve the impact strength. Besides this, the compatibilizer polyolefin grafted maleic anhydride (POE-g-MA) can cover the PET in either spherical or microfibrillar shape to form a core⁻shell structure, which tends to improve both the yield and impact strength. We focused on the influence of all composing aspects—fibrillation of the dispersed PET, PP matrix crystalline morphology, and compatibilized interface—on the mechanical properties of PP/PET blends as well as potential synergies between these components. Overall, we provided a theoretical basis for the mechanical recycling of immiscible blends

    Integrative transcriptome and metabolome analysis reveals the mechanisms of light-induced pigmentation in purple waxy maize

    Get PDF
    IntroductionWaxy maize, mainly consumed at the immature stage, is a staple and vegetable food in Asia. The pigmentation in the kernel of purple waxy maize enhances its nutritional and market values. Light, a critical environmental factor, affects anthocyanin biosynthesis and results in pigmentation in different parts of plants, including in the kernel. SWL502 is a light-sensitive waxy maize inbred line with purple kernel color, but the regulatory mechanism of pigmentation in the kernel resulting in purple color is still unknown.MethodsIn this study, cyanidin, peonidin, and pelargonidin were identified as the main anthocyanin components in SWL502, evaluated by the ultra-performance liquid chromatography (UPLC) method. Investigation of pigment accumulation in the kernel of SWL502 was performed at 12, 17, and 22 days after pollination (DAP) under both dark and light treatment conditions via transcriptome and metabolome analyses.ResultsDark treatment affected genes and metabolites associated with metabolic pathways of amino acid, carbohydrate, lipid, and galactose, biosynthesis of phenylpropanoid and terpenoid backbone, and ABC transporters. The expression of anthocyanin biosynthesis genes, such as 4CL2, CHS, F3H, and UGT, was reduced under dark treatment. Dynamic changes were identified in genes and metabolites by time-series analysis. The genes and metabolites involved in photosynthesis and purine metabolism were altered in light treatment, and the expression of genes and metabolites associated with carotenoid biosynthesis, sphingolipid metabolism, MAPK signaling pathway, and plant hormone signal transduction pathway were induced by dark treatment. Light treatment increased the expression level of major transcription factors such as LRL1, myc7, bHLH125, PIF1, BH093, PIL5, MYBS1, and BH074 in purple waxy maize kernels, while dark treatment greatly promoted the expression level of transcription factors RVE6, MYB4, MY1R1, and MYB145.DiscussionThis study is the first report to investigate the effects of light on waxy maize kernel pigmentation and the underlying mechanism at both transcriptome and metabolome levels, and the results from this study are valuable for future research to better understand the effects of light on the regulation of plant growth

    New Approach to Optimize Mechanical Properties of the Immiscible Polypropylene/Poly (Ethylene Terephthalate) Blend: Effect of Shish-Kebab and Core-Shell Structure

    No full text
    Improving the mechanical properties of immiscible PP/PET blend is of practical significance especially in the recycling process of multi-layered plastic solid waste. In this work, a multi-flow vibration injection molding technology (MFVIM) was hired to convert the crystalline morphology of the PP matrix from spherulite into shish-kebab. POE–g–MA was added as compatibilizer, and results showed that the compatibilization effect consisted in the formation of a core-shell structure by dispersing the POE–g–MA into the PP matrix to encapsulate the PET. It was found that the joint action of shish-kebab crystals and spherical core-shell structure enabled excellent mechanical performance with a balance of strength and toughness for samples containing 10 wt % PET and 4 wt % POE–g–MA, of which the yield strength and impact strengths were 50.87 MPa and 13.71 kJ/m2, respectively. This work demonstrates a new approach to optimize mechanical properties of immiscible PP/PET blends, which is very meaningful for the effective recycling of challenging plastic wastes

    Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid

    No full text
    The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at 433 K for 1 h in the γ-butyrolactone (GBL)-H2O system, as well as the concomitant formation of 83.0% formic acid. The 13C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose

    Switchable product selectivity in dehydration of N-acetyl-d-glucosamine promoted by choline chloride-based deep eutectic solvents

    No full text
    Summary: Herein, we report choline chloride-based deep eutectic solvents (DESs) promoted conversion of N-acetyl-d-glucosamine (GlcNAc) into nitrogen-containing compounds, i.e., 3-acetamido-5-(1′,2′-dihydroxyethyl) furan (Chromogen III) and 3-acetamido-5-acetylfuran (3A5AF). The binary deep eutectic solvent choline chloride-glycerin (ChCl-Gly), was found to promote the dehydration of GlcNAc to form Chromogen III, which reaches a maximum yield of 31.1%. On the other hand, the ternary deep eutectic solvent, choline chloride-glycerol-B(OH)3 (ChCl-Gly-B(OH)3), promoted the further dehydration of GlcNAc into 3A5AF with a maximum yield of 39.2%. In addition, the reaction intermediate, 2-acetamido-2,3-dideoxy-d-erythro-hex-2-enofuranose (Chromogen I), was detected by in situ nuclear magnetic resonance (NMR) techniques when promoted by ChCl-Gly-B(OH)3. The experimental results of the 1H NMR chemical shift titration showed ChCl-Gly interactions with α-OH-3 and α-OH-4 of GlcNAc, which is responsible for promoting the dehydration reaction. Meanwhile, the strong interaction between Cl− and GlcNAc was demonstrated by 35Cl NMR
    • …
    corecore