96 research outputs found

    The effects of ferromagnetism and interstitial hydrogen on the equation of states of hcp and dhcp FeHx: Implications for the Earth's inner core age

    Get PDF
    Hydrogen has been considered as an important candidate of light elements in the Earth's core. Because iron hydrides are unquenchable, hydrogen content is usually estimated from in situ X-ray diffraction measurements that assume the following linear relation: x = (V-FeHx - V-Fe)/Delta V-H, where x is the hydrogen content, Delta V-H is the volume expansion caused by unit concentration of hydrogen, and V-FeHx and V-Fe are volumes of FeHx and pure iron, respectively. To verify the linear relationship, we computed the equation of states of hexagonal iron with interstitial hydrogen by using the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA). The results indicate a discontinuous volume change at the magnetic transition and almost no compositional (x) dependence in the ferromagnetic phase at 20 GPa, whereas the linearity is confirmed in the non-magnetic phase. In addition to their effect on the density-composition relationship in the Fe-FeHx system, which is important for estimating the hydrogen incorporation in planetary cores, the magnetism and interstitial hydrogen also affect the electrical resistivity of FeHx. The thermal conductivity can be calculated from the electrical resistivity by using the Wiedemann-Franz law, which is a critical parameter for modeling the thermal evolution of the Earth. Assuming an Fe1-ySiyHx ternary outer core model (0.0 <= x <= 0.7), we calculated the thermal conductivity and the age of the inner core. The resultant thermal conductivity is similar to 100 W/m/K and the maximum inner core age ranges from 0.49 to 0.86 Gyr

    Behavior of iron in (Mg,Fe)SiO_3 post-perovskite assemblages at Mbar pressures

    Get PDF
    The electronic environment of the iron sites in post-perovskite (PPv) structured (^(57)Fe,Mg)SiO_3 has been measured in-situ at 1.12 and 1.19 Mbar at room temperature using ^(57)Fe synchrotron Mössbauer spectroscopy. Evaluation of the time spectra reveals two distinct iron sites, which are well distinguished by their hyperfine fields. The dominant site is consistent with an Fe^(3+)-like site in a high spin state. The second site is characterized by a small negative isomer shift with respect to α-iron and no quadrupole splitting, consistent with a metallic iron phase. Combined with SEM/EDS analyses of the quenched assemblage, our results are consistent with the presence of a metallic iron phase co-existing with a ferric-rich PPv. Such a reaction pathway may aid in our understanding of the chemical evolution of Earth's core-mantle-boundary region

    Pressure-induced structural modulations in coesite

    Get PDF
    Silica phases, SiO2, have attracted significant attention as important phases in the fields of condensed-matter physics, materials science, and (in view of their abundance in the Earth's crust) geoscience. Here, we experimentally and theoretically demonstrate that coesite undergoes structural modulations under high pressure. Coesite transforms to a distorted modulated structure, coesite-II, at 22–25 GPa with modulation wave vector q=0.5b∗. Coesite-II displays further commensurate modulation along the y axis at 36–40 GPa and the long-range ordered crystalline structure collapses beyond ∼40GPa and starts amorphizing. First-principles calculations illuminate the nature of the modulated phase transitions of coesite and elucidate the modulated structures of coesite caused by modulations along the y-axis direction. The structural modulations are demonstrated to result from phonon instability, preceding pressured-induced amorphization. The recovered sample after decompression develops a rim of crystalline coesite structure, but its interior remains low crystalline or partially amorphous. Our results not only clarify that the pressure-induced reversible phase transitions and amorphization in coesite originate from structural modulations along the y-axis direction, but also shed light on the densification mechanism of silica under high pressure

    Investigating metallic cores using experiments on the physical properties of liquid iron alloys

    Get PDF
    An outstanding goal in planetary science is to understand how terrestrial cores evolved to have the compositions, thermal properties, and magnetic fields observed today. To achieve that aim requires the integration of datasets from space missions with laboratory experiments conducted at high pressures and temperatures. Over the past decade, technological advances have enhanced the capability to conduct in situ measurements of physical properties on samples that are analogs to planetary cores. These challenging experiments utilize large-volume presses that optimize control of pressure and temperature, and diamond-anvil cells to reach the highest pressures. In particular, the current experimental datasets of density, compressional velocity, viscosity, and thermal conductivity of iron alloys are most relevant to the core conditions of small terrestrial planets and moons. Here we review the physical properties of iron alloys measured in the laboratory at conditions relevant to the cores of Mars, the Moon, and Mercury. We discuss how these properties inform models of core composition, as well as thermal and magnetic evolution of their cores. Experimental geochemistry (in particular, metal-silicate partitioning experiments) provides additional insights into the nature and abundance of light elements within cores, as well as crystallization processes. Emphasis is placed on the Martian core to discuss the effect of chemistry on core evolution

    Deciphering and identifying pan-cancer RAS pathway activation based on graph autoencoder and ClassifierChain

    Get PDF
    The goal of precision oncology is to select more effective treatments or beneficial drugs for patients. The transcription of ‘‘hidden responders’’ which precision oncology often fails to identify for patients is important for revealing responsive molecular states. Recently, a RAS pathway activation detection method based on machine learning and a nature-inspired deep RAS activation pan-cancer has been proposed. However, we note that the activating gene variations found in KRAS, HRAS and NRAS vary substantially across cancers. Besides, the ability of a machine learning classifier to detect which KRAS, HRAS and NRAS gain of function mutations or copy number alterations causes the RAS pathway activation is not clear. Here, we proposed a deep neural network framework for deciphering and identifying pan-cancer RAS pathway activation (DIPRAS). DIPRAS brings a new insight into deciphering and identifying the pan-cancer RAS pathway activation from a deeper perspective. In addition, we further revealed the identification and characterization of RAS aberrant pathway activity through gene ontological enrichment and pathological analysis. The source code is available by the URL https://github.com/zhaoyw456/DIPRAS

    Toward a mineral physics reference model for the Moon's core

    Get PDF
    International audienceIron is the main constituent of terrestrial planetary cores, taking on a hexagonal closed packed structure under the conditions of Earth’s inner core, and a face-centered cubic (fcc) structure at the more moderate pressures of smaller bodies, such as the Moon, Mercury, or Mars. Here we present sound velocity and density measurements of fcc iron at pressures and temperatures characteristic of small planetary interiors. The results indicate that the seismic velocities currently proposed for the Moon’s inner core are well below those of fcc iron or plausible iron alloys. Our dataset provides strong constraints to seismic models of the lunar core and cores of small telluric planets, and allows us to build a direct compositional and velocity model of the Moon’s core
    • …
    corecore