12 research outputs found

    A systematic review of microbial markers for risk prediction of colorectal neoplasia

    Get PDF
    BACKGROUND: Substantial evidence indicates that dysbiosis of the gut microbial community is associated with colorectal neoplasia. This review aims to systematically summarise the microbial markers associated with colorectal neoplasia and to assess their predictive performance. METHODS: A comprehensive literature search of MEDLINE and EMBASE databases was performed to identify eligible studies. Observational studies exploring the associations between microbial biomarkers and colorectal neoplasia were included. We also included prediction studies that constructed models using microbial markers to predict CRC and adenomas. Risk of bias for included observational and prediction studies was assessed. RESULTS: Forty-five studies were included to assess the associations between microbial markers and colorectal neoplasia. Nine faecal microbiotas (i.e., Fusobacterium, Enterococcus, Porphyromonas, Salmonella, Pseudomonas, Peptostreptococcus, Actinomyces, Bifidobacterium and Roseburia), two oral pathogens (i.e., Treponema denticola and Prevotella intermedia) and serum antibody levels response to Streptococcus gallolyticus subspecies gallolyticus were found to be consistently associated with colorectal neoplasia. Thirty studies reported prediction models using microbial markers, and 83.3% of these models had acceptable-to-good discrimination (AUROC > 0.75). The results of predictive performance were promising, but most of the studies were limited to small number of cases (range: 9–485 cases) and lack of independent external validation (76.7%). CONCLUSIONS: This review provides insight into the evidence supporting the association between different types of microbial species and their predictive value for colorectal neoplasia. Prediction models developed from case-control studies require further external validation in high-quality prospective studies. Further studies should assess the feasibility and impact of incorporating microbial biomarkers in CRC screening programme

    Association between antibiotic use during early life and early-onset colorectal cancer risk overall and according to polygenic risk and FUT2 genotypes

    Get PDF
    Early-onset colorectal cancer (EOCRC) has been increasing worldwide. Potential risk factors may have occurred in childhood or adolescence. We investigated the associations between early-life factors and EOCRC risk, with a particular focus on long-term or recurrent antibiotic use (LRAU) and its interaction with genetic factors. Data on the UK Biobank participants recruited between 2006 and 2010 and followed up to February 2022 were used. We used logistic regression to estimate adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) of the associations between LRAU during early life and EOCRC risk overall and by polygenic risk score (constructed by 127 CRC-related genetic variants) and Fucosyltransferase 2 (FUT2), a gut microbiota regulatory gene. We also assessed the associations for early-onset colorectal adenomas, as precursor lesion of CRC, to examine the effect of LRAU during early-life and genetic factors on colorectal carcinogenesis. A total of 113 256 participants were included in the analysis, with 165 EOCRC cases and 719 EOCRA cases. LRAU was nominally associated with increased risk of early-onset CRC (OR = 1.48, 95% CI = 1.01-2.17, P = .046) and adenomas (OR = 1.40, 95% CI = 1.17-1.68, P < .001). When stratified by genetic polymorphisms of FUT2, LRAU appeared to confer a comparatively greater risk for early-onset adenomas among participants with rs281377 TT genotype (OR = 1.10, 95% CI = 0.79-1.52, P = .587, for CC genotype; OR = 1.75, 95% CI = 1.16-2.64, P = .008, for TT genotype; Pinteraction  = .089). Our study suggested that LRAU during early life is associated with increased risk of early-onset CRC and adenomas, and the association for adenomas is predominant among individuals with rs281377 TT/CT genotype. Further studies investigating how LRAU contributes together with genetic factors to modify EOCRC risk, particularly concerning the microbiome-related pathway underlying colorectal carcinogenesis, are warranted

    Study on Nutritional Knowledge, Attitude and Behavior of Chinese School Football Players

    No full text
    Objective: This study aims to validate previous structural models of factors influencing dietary behavior changes and construct the knowledge, attitude, and behavioral models of youth school football players. Methods: 279 school football players aged 12–17 years in Grades 7–12 in Hunan Province, China, completed a questionnaire to collect data on sports nutrition knowledge, attitudes, and behavior. A structural equation model (SEM) was built based on the knowledge-attitude-behavior (KAB) model and the theory of planned behavior (TPB) model to introduce nutritional knowledge directly or by altering attitudes into the dietary behavior path of players. Four factors affecting dietary behaviors were involved in the hypothetical structure, which consists of the following hypotheses: (1) nutrition knowledge affects the attitude towards sports nutrition (H1); (2) nutrition knowledge affects dietary behaviors (H2); (3) nutrition knowledge affects subjective norms (H3); (4) nutrition knowledge affects perceived behavioral control (H4); (5) subjective norms affect dietary behaviors (H5); and 6) perceived behavioral control affects dietary behaviors (H6). Results: Confirmatory factor analysis (CFA) revealed that the reliability, convergent validity, and discriminant validity of the built SEM conformed to the measured relationships in each dimension. In the final structural model, it was found that nutrition knowledge had a direct impact on the attitudes of players and affected their dietary behaviors in a direct manner or through their subjective norms and perceived behavioral control. Conclusions: The results are in agreement with the TPB-based KAB chain and support the KAB theory for youth school football players in Hunan Province, China

    Effects of Different Frying Oils Composed of Various Fatty Acids on the Formation of Multiple Hazards in Fried Pork Balls

    No full text
    Oil oxidation products can react with food substrates to produce harmful substances, and oil saturation is closely related to oil oxidation in the process of frying. Therefore, the influence of the composition of fatty acids in oil on the formation of harmful substances in fried pork balls was explored. The five frying oils with the lowest unsaturated fatty acid (UFA) content, ranked in ascending order, were palm oil, peanut oil, soybean oil, corn oil, and colza oil (64.94%, 79.94%, 82.65%, 83.07%, and 92.26%, respectively). The overall levels of four harmful substances (acrylamide, polycyclic aromatic hydrocarbons, heterocyclic amines, and trans fatty acids) found in the oil used to fry pork balls followed a descending order: canola oil, corn oil, peanut oil, soybean oil, and palm oil (33.66 μg/kg, 27.17 μg/kg, 23.45 μg/kg, 18.67 μg/kg, and 13.19 μg/kg, respectively). This order was generally consistent with the trend in the content of UFAs. Therefore, the formation of harmful substances is closely related to the saturation of oil. Compared with other frying oils, soybean oil as a household oil produces relatively low amounts of harmful substances and has less negative impact on the quality (oil content, moisture content, and higher protein digestibility) of fried products

    Characterization and mitigation of artifacts derived from NGS library preparation due to structure-specific sequences in the human genome

    No full text
    Abstract Background Hybridization capture-based targeted next generation sequencing (NGS) is gaining importance in routine cancer clinical practice. DNA library preparation is a fundamental step to produce high-quality sequencing data. Numerous unexpected, low variant allele frequency calls were observed in libraries using sonication fragmentation and enzymatic fragmentation. In this study, we investigated the characteristics of the artifact reads induced by sonication and enzymatic fragmentation. We also developed a bioinformatic algorithm to filter these sequencing errors. Results We used pairwise comparisons of somatic single nucleotide variants (SNVs) and insertions and deletions (indels) of the same tumor DNA samples prepared using both ultrasonic and enzymatic fragmentation protocols. Our analysis revealed that the number of artifact variants was significantly greater in the samples generated using enzymatic fragmentation than using sonication. Most of the artifacts derived from the sonication-treated libraries were chimeric artifact reads containing both cis- and trans-inverted repeat sequences of the genomic DNA. In contrast, chimeric artifact reads of endonuclease-treated libraries contained palindromic sequences with mismatched bases. Based on these distinctive features, we proposed a mechanistic hypothesis model, PDSM (pairing of partial single strands derived from a similar molecule), by which these sequencing errors derive from ultrasonication and enzymatic fragmentation library preparation. We developed a bioinformatic algorithm to generate a custom mutation “blacklist” in the BED region to reduce errors in downstream analyses. Conclusions We first proposed a mechanistic hypothesis model (PDSM) of sequencing errors caused by specific structures of inverted repeat sequences and palindromic sequences in the natural genome. This new hypothesis predicts the existence of chimeric reads that could not be explained by previous models, and provides a new direction for further improving NGS analysis accuracy. A bioinformatic algorithm, ArtifactsFinder, was developed and used to reduce the sequencing errors in libraries produced using sonication and enzymatic fragmentation
    corecore