2 research outputs found

    Diagnosis–Therapy Integrative Systems Based on Magnetic RNA Nanoflowers for Co-drug Delivery and Targeted Therapy

    No full text
    This study was to develop a codrug delivery system for targeting cancer therapy based on magnetic RNA nanoflowers (RNA NF). Compared with traditional nucleic acid structure, convenient separation can be achieved by introducing magnetic nanoparticle (MNP) into RNA NF. Folic acid (FA) modified MNP/RNA NF (FA/MNP/RNA NF) was used as a targeting nanocarrier with excellent biocompatibility to overcome the nonselectivity of MNP/RNA NF. And then, anticancer drug doxorubicin (DOX) and photosensitizer 5, 10, 15, 20-tetrakis (1-methylpyridinium-4-yl) porphyrin (TMPyP<sub>4</sub>) binding with RNA NF were used as codrug cargo models. RNA NF was first used for codrug delivery. So, imaging fluorescent tags, target recognition element, and drug molecules were all assembled together on the surface of MNP/RNA NF. The experimental results suggested that the treatment efficacy of codrug delivery platform (FA/MNP/RNA NF/D/T) was better than single-drug delivery platform (FA/MNP/RNA NF/D). Besides, the FA/MNP/RNA NF was used as a probe for cancer cell detection. The limit of detection was 50 HeLa cells. In conclusion, the codrug delivery platform based on FA/MNP/RNA NF was a promising approach for the intracellular quantification of other biomolecules, as well as a diagnosis–therapy integrative system

    Ti<sub>3</sub>C<sub>2</sub> MXene Nanosheet-Based Dual-Enzyme Cascade Reaction to Facilitate Dual-Stimulation-Mediated Breast Cancer Therapy

    No full text
    Starvation therapy mediated by glucose oxidase is a widely used therapeutic approach for tumor treatment, but it is limited by the simultaneous drawbacks of weak therapeutic efficacy, nonspecificity, and systemic toxicity. Thus, combination therapy was used to complement the widely used therapeutic strategy for anticancer therapy. On the basis of starvation therapy, we designed a catalytic model of nanosheets with biological cascade enzymes synergizing with anticancer drugs. In short, two cascade enzymes (glucose oxidase and horseradish peroxidase) are covalently immobilized on Ti3C2 MXene nanosheet and a cascade enzyme nanoreactor is formed by electrostatically adsorbing positive charged DOX. Finally, the outer layer is coated with hyaluronic acid. By combining glucose oxidase-mediated starvation therapy, photothermal therapy, and chemotherapy, we have achieved the therapeutic effect of “killing three birds with one stone” by combining the dual stimulation response of endogenous and exogenous sources to the tumor site. This method not only achieves the targeting of cancer cells but also improves the systemic toxicity and reduced efficacy of biological enzymes and realizes synergistic cancer therapy with enhanced cascade reactions. It opens up a new path for the research of nanomedicine
    corecore