19 research outputs found

    Superconductivity in a new layered cobalt oxychalcogenide Na6_{6}Co3_{3}Se6_{6}O3_{3} with a 3d5d^{5} triangular lattice

    Full text link
    Unconventional superconductivity in bulk materials under ambient pressure is extremely rare among the 3dd transition-metal compounds outside the layered cuprates and iron-based family. It is predominantly linked to highly anisotropic electronic properties and quasi-two-dimensional (2D) Fermi surfaces. To date, the only known example of the Co-based exotic superconductor was the hydrated layered cobaltate, Nax_{x}CoO2⋅_{2}\cdot yH2_{2}O, and its superconductivity is realized in the vicinity of a spin-1/2 Mott state. However, the nature of the superconductivity in these materials is still an active subject of debate, and therefore, finding new class of superconductors will help unravel the mysteries of their unconventional superconductivity. Here we report the discovery of unconventional superconductivity at ∼\sim 6.3 K in our newly synthesized layered compound Na6_{6}Co3_{3}Se6_{6}O3_{3}, in which the edge-shared CoSe6_{6} octahedra form [CoSe2_{2}] layers with a perfect triangular lattice of Co ions. It is the first 3dd transition-metal oxychalcogenide superconductor with distinct structural and chemical characteristics. Despite its relatively low TcT_{c}, material exhibits extremely high superconducting upper critical fields, μ0Hc2(0)\mu_{0}H_{c2}(0), which far exceeds the Pauli paramagnetic limit by a factor of 3 - 4. First-principles calculations show that Na6_{6}Co3_{3}Se6_{6}O3_{3} is a rare example of negative charge transfer superconductor. This new cobalt oxychalcogenide with a geometrical frustration among Co spins, shows great potential as a highly appealing candidate for the realization of high-TcT_{c} and/or unconventional superconductivity beyond the well-established Cu- and Fe-based superconductor families, and opened a new field in physics and chemistry of low-dimensional superconductors

    Evaluation of Supramolecular Gel Properties and Its Application in Drilling Fluid Plugging

    No full text
    Supramolecular gels are physically cross-linked hydrogels formed by non-covalent interactions. The synthesis, structure optimization, property regulation, and application expansion of supramolecular gels has gradually become the research hotspot in the field of gel materials. According to the non-covalent interactions such as hydrophobic association and hydrogen bonding, the supramolecular gel prepared in this study has excellent rheological properties and adaptive filling and plugging properties, and can be used in the field of drilling fluid plugging. In this paper, the microstructure, rheological properties, temperature resistance, and plugging properties of supramolecular gels were studied and characterized in detail. The experimental findings demonstrated that when the strain was less than 10%, the supramolecular gel displayed an excellent linear viscoelastic region. The increase in strain weakens the rheological properties of supramolecular gel and reduces the elastic modulus of supramolecular gel to a certain extent. The supramolecular gel still had a neat three-dimensional reticular structure after curing at high temperatures, and the network of each layer was closely connected. Its extensibility and tensile properties were good, and it had excellent temperature resistance and mechanical strength. The supramolecular gel had excellent tensile and compressive properties and good deformation recovery properties. When the elongation of the supramolecular gel reached 300%, the tensile stress was 2.33 MPa. When the compression ratio of supramolecular gel was 91.2%, the compressive stress could reach 4.78 MPa. The supramolecular gel could show an excellent plugging effect on complex loss layers with different fracture pore sizes, the plugging success rate could reach more than 90%, and the plugging layer could withstand 6.3 MPa external pressure. The smart plugging fluid prepared with supramolecular gel material could quickly form a fine barrier layer on the rock surface of the reservoir. It could effectively isolate drilling fluid from entering the reservoir and reduce the adverse effects, such as permeability reduction caused by drilling fluid entering the reservoir, so as to achieve the purpose of reservoir protection

    Experimental Study on Physicochemical Properties of a Shear Thixotropic Polymer Gel for Lost Circulation Control

    No full text
    Polymer gel lost circulation control technology is a common and effective technique to control fractured lost circulation. The performance of a lost circulation control agent is the key to the success of lost circulation control techniques. In this study, rheological tests were used to study the physical and chemical properties of a shear thixotropic polymer gel system, such as anti-dilution, high temperature resistance and high salt resistance. The results showed that the shear thixotropic polymer gel system had the ability of anti-dilution, and the gel could be formed under a mixture of 3 times volume of heavy salt water and 3/7 volume white oil, and could keep the structure and morphology stable. Secondly, the gel formation time of shear thixotropic polymer gel system could be controlled and had good injection performance under the condition of 140 °C and different initiator concentrations. Meanwhile, the shear thixotropic polymer gel system had the ability of high temperature and high salt resistance, and the gel formation effect was good in salt water. When the scanning frequency was 4 Hz and the temperature was 140 °C, the storage modulus (G′) of the gel was 4700 Pa. The gel was dominated by elasticity and had excellent mechanical properties. By scanning electron microscope observation, it was found that the shear thixotropic polymer gel system had a stable three-dimensional reticular space skeleton under the condition of high salt, indicating that it had excellent ability to tolerate high salt. Therefore, the shear thixotropic polymer gel had high temperature and high salt resistance, dilution resistance and good shear responsiveness. It is believed that the results presented in this work are of importance for extending real-life applications of shear thixotropic polymer gel systems

    Physical plugging of lost circulation fractures at microscopic level

    No full text
    Drilling fluid loss into formation fractures is one of the most common and costly problems encountered during the exploration and development of oil and gas resources. At present, the most extensive solution is to use physical lost circulation materials (LCMs) to form high-strength plugging zone in fractures. However, it is still unclear how the plugging is initiated and formed in the fracture. In this paper, a microscopic visualization experimental device for the formation of plugging zone is used to observe the dynamic plugging performance of spherical materials, flaky materials and fibers in fracture. Experimental results show that the formation of fracture plugging zone can be divided into retention stage and plugging stage. Spherical materials have three main retention modes: single-particle straining, dual-particle bridging and multi-particle bridging. Flaky materials assist the retention and plugging of spherical materials through three modes: embedded, intercepted and supported. Fibers take part in the retention of spherical materials through three ways: forming a net at the entrance of the fracture, forming a net after bridging the particle materials, and transverse filling in the fracture. The results achieved in this work provide a basis for the selection and design of LCMs for lost circulation control in deep fractured tight reservoir

    Synthesis and Characterization of an Novel Intercalated Polyacrylamide/Clay Nanocomposite

    No full text
    Solving the problem of the low temperature and low salt resistances of conventional polyacrylamide and the high cost of functional monomers, and thus, introducing it to the interlayer space provided by a layered structure for polymer modification, is a promising option. In this study, montmorillonite was used as the inorganic clay mineral, and an intercalated polyacrylamide/clay nanocomposite was synthesized via in situ intercalation polymerization. The optimal synthesis conditions were a clay content of 10.7%, preparation temperature of 11 °C, initiator concentration of 2.5 × 10−4 mol/L, and chain extender concentration of 5%. The IR results showed that the polymer was successfully introduced to the nanocomposite. The synthesized intercalated polyacrylamide/clay nanocomposite exhibited a better thickening effect, good viscoelasticity, and better salt resistance and thermal stability than polyacrylamide. In addition, the thickening capacity and thermal stability were superior to the salt-resistant polymer, with a 16.0% higher thickening viscosity and a 15.1% higher viscosity retention rate at 85 °C for 60 d. The intercalated polyacrylamide/clay nanocomposite further expanded the application of polyacrylamide in petroleum exploitation

    Anisotropy of plasticity in Ti–6Al–4V alloy processed by electron beam direct energy deposition

    No full text
    Additive manufactured titanium alloys are generally characterized by columnar grain structures along the vertical direction (VD), thereby causing a relative lower plasticity in the horizontal direction (HD) than that in the VD direction. However, herein we report that such columnar grain structures in the Ti–6Al–4V alloy produced by electron beam direct energy deposition (EB DED) can induce a superior uniform elongation in the HD direction than that in the other loading directions (22.5°,45°, 67.5° and VD directions). Besides the orientation of α laths with a favorable soft and hard match when the loading direction is along the HD, such anisotropic plasticity also can be attributed to the columnar grain structures which can also effectively prevent dislocation slip and suppress the necking of the HD sample, thereby triggering a greater work-hardening rate and strain hardening exponent in the stage of uniform deformation, and increasing the uniform elongation in the HD. The greater total elongation in the VD is mainly reflected in its higher non-uniform elongation, rather than uniform elongation, which is mainly caused by the α laths possessing easily activated basal slip system inducing strain softening. As for the 22.5° and 45° samples, most of the α laths under such loading directions present hard orientation, thereby leading to both lower non-uniform elongation and total elongation. The above information offers a deeper understanding about anisotropic plasticity in additive manufactured titanium alloys, thereby providing a theoretical basis for optimizing the consistency of mechanical properties

    Research progress and prospect of plugging technologies for fractured formation with severe lost circulation

    No full text
    By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured formations have been summarized. Meanwhile, based on the types of lost circulation materials, the advantages, disadvantages, and application effects of corresponding plugging technologies have been analyzed to sort out the key problems existing in the current lost circulation control technologies. On this basis, the development direction of plugging technology for severe loss have been pointed out. It is suggested that that the lost circulation control technology should combine different disciplines such as geology, engineering and materials to realize integration, intelligence and systematization in the future. Five research aspects should be focused on: (1) the study on mechanisms of drilling fluid lost circulation and its control to provide basis for scientific selection of lost circulation material formulas, control methods and processes; (2) the research and development of self-adaptive lost circulation materials to improve the matching relationship between lost control materials and fracture scales; (3) the research and development of lost circulation materials with strong retention and strong filling in three-dimensional fracture space, to enhance the retention and filling capacities of materials in fractures and improve the lost circulation control effect; (4) the research and development of lost circulation materials with high temperature tolerance, to ensure the long-term plugging effect of deep high-temperature formations; (5) the study on digital and intelligent lost circulation control technology, to promote the development of lost circulation control technology to digital and intelligent direction

    Comparative Studies on Thickeners as Hydraulic Fracturing Fluids: Suspension versus Powder

    No full text
    To overcome the problems of long dissolution time and high investment in surface facilities of powder thickeners in hydraulic fracturing, a novel suspension of a thickener as a fracturing fluid was prepared using powder polyacrylamide, nano-silica, and polyethylene glycol by high-speed mixing. The suspension and powder were compared in terms of properties of solubility, rheological behavior, sand carrying, drag reduction, and gel breaking. The results showed that the suspension could be quickly diluted in brine within 5 min, whereas the dissolution time of powder was 120 min. The suspension exhibited better performance in salt resistance, temperature resistance, shear resistance, viscoelasticity, sand carrying, and drag reduction than powder. The powder solution was broken more easily and had a lower viscosity than suspension diluent. These improvements in properties of the suspension were due to the dispersion of nano-silica in the polymer matrix; the mobility of thickener chains was inhibited by the steric hindrance of the nano-silica. Nano-silica particles acted as crosslinkers by attaching thickener chains, which strengthened the network structure of the thickener solution. The presence of hydrogen bonds between the thickener matrix and the nano-silica restricted the local movement of thickener chains, leading to a stronger spatial network. Therefore, this novel suspension showed good potential for fracturing applications
    corecore