Superconductivity in a new layered cobalt oxychalcogenide Na6_{6}Co3_{3}Se6_{6}O3_{3} with a 3d5d^{5} triangular lattice

Abstract

Unconventional superconductivity in bulk materials under ambient pressure is extremely rare among the 3dd transition-metal compounds outside the layered cuprates and iron-based family. It is predominantly linked to highly anisotropic electronic properties and quasi-two-dimensional (2D) Fermi surfaces. To date, the only known example of the Co-based exotic superconductor was the hydrated layered cobaltate, Nax_{x}CoO2β‹…_{2}\cdot yH2_{2}O, and its superconductivity is realized in the vicinity of a spin-1/2 Mott state. However, the nature of the superconductivity in these materials is still an active subject of debate, and therefore, finding new class of superconductors will help unravel the mysteries of their unconventional superconductivity. Here we report the discovery of unconventional superconductivity at ∼\sim 6.3 K in our newly synthesized layered compound Na6_{6}Co3_{3}Se6_{6}O3_{3}, in which the edge-shared CoSe6_{6} octahedra form [CoSe2_{2}] layers with a perfect triangular lattice of Co ions. It is the first 3dd transition-metal oxychalcogenide superconductor with distinct structural and chemical characteristics. Despite its relatively low TcT_{c}, material exhibits extremely high superconducting upper critical fields, ΞΌ0Hc2(0)\mu_{0}H_{c2}(0), which far exceeds the Pauli paramagnetic limit by a factor of 3 - 4. First-principles calculations show that Na6_{6}Co3_{3}Se6_{6}O3_{3} is a rare example of negative charge transfer superconductor. This new cobalt oxychalcogenide with a geometrical frustration among Co spins, shows great potential as a highly appealing candidate for the realization of high-TcT_{c} and/or unconventional superconductivity beyond the well-established Cu- and Fe-based superconductor families, and opened a new field in physics and chemistry of low-dimensional superconductors

    Similar works

    Full text

    thumbnail-image

    Available Versions