18 research outputs found

    MiR-130a inhibition protects rat cardiac myocytes from hypoxia-triggered apoptosis by targeting Smad4

    Get PDF
    Background: Cardiomyocyte death facilitates the pathological process underlying ischaemic heart diseases, such as myocardial infarction. Emerging evidence suggests that microRNAs play a critical role in the pathological process underlying myocardial infarction by regulating cardiomyocyte apoptosis. However, the relevance of miR-130a in regulating cardiomyocyte apoptosis and the underlying mechanism are still uncertain. Aim: We sought to explore the regulatory effect of miR-130a on hypoxic cardiomyocyte apoptosis. Methods: The expression of miR-130a was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell survival was determined by the MTT assay. The lactate dehydrogenase (LDH) assay was performed to deter­mine the severity of hypoxia-induced cell injury. Apoptosis was assessed via caspase-3 analysis. Protein expression level was determined by Western blotting. The genes targeted by miR-130a were predicted using bioinformatics and were validated via the dual-luciferase reporter assay system. Results: We found that miR-130a expression was greatly increased in hypoxic cardiac myocytes, and that the downregulation of miR-130a effectively shielded cardiac myocytes from hypoxia-triggered apoptosis. In bioinformatic analysis the Smad4 gene was predicted to be the target of miR-130a. This finding was validated through the Western blot assay, dual-luciferase reporter gene assay, and qRT-PCR. MiR-130a inhibition significantly promoted the activation of Smad4 in hypoxic cardiomyocytes. Inter­estingly, knockdown of Smad4 markedly reversed the protective effects induced by miR-130a inhibition. Moreover, we found that the inhibition of miR-130a promoted the activation of transforming growth factor-b1 signalling. Blocking of Smad4 signal­ling significantly abrogated the protective effects of miR-130a inhibition. Conclusions: The findings indicate that inhibition of miR-130a, which targets the Smad4 gene, shields cardiac myocytes from hypoxic apoptosis. This study offers a novel perspective on the molecular basis of hypoxia-induced cardiomyocyte apoptosis and suggests a possible drug target for the treatment of myocardial infarction

    Identification of miRs-143 and -145 that Is Associated with Bone Metastasis of Prostate Cancer and Involved in the Regulation of EMT

    Get PDF
    The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bone. MicroRNAs (miRNAs) play a crucial role in many tumor metastases. The importance of miRNAs in bone metastasis of PCa has not been elucidated to date. We investigated whether the expression of certain miRNAs was associated with bone metastasis of PCa. We examined the miRNA expression profiles of 6 primary and 7 bone metastatic PCa samples by miRNA microarray analysis. The expression of 5 miRNAs significantly decreased in bone metastasis compared with primary PCa, including miRs-508-5p, -145, -143, -33a and -100. We further examined other samples of 16 primary PCa and 13 bone metastases using real-time PCR analysis. The expressions of miRs-143 and -145 were verified to down-regulate significantly in metastasis samples. By investigating relationship of the levels of miRs-143 and -145 with clinicopathological features of PCa patients, we found down-regulations of miRs-143 and -145 were negatively correlated to bone metastasis, the Gleason score and level of free PSA in primary PCa. Over-expression miR-143 and -145 by retrovirus transfection reduced the ability of migration and invasion in vitro, and tumor development and bone invasion in vivo of PC-3 cells, a human PCa cell line originated from a bone metastatic PCa specimen. Their upregulation also increased E-cadherin expression and reduced fibronectin expression of PC-3 cells which revealed a less invasive morphologic phenotype. These findings indicate that miRs-143 and -145 are associated with bone metastasis of PCa and suggest that they may play important roles in the bone metastasis and be involved in the regulation of EMT Both of them may also be clinically used as novel biomarkers in discriminating different stages of human PCa and predicting bone metastasis

    Validation of select miRNAs predicted to be downregulated in prostate cancer.

    No full text
    <p><i>A,</i> The certified result of microarray analysis. <i>B,</i> Real-time RT–PCR assays on miR-143 (left panel), miR-145 (right panel), and miR-125b (bottom panel) in 16 primary prostate cancer and 13 bone metastasis tissues. The order of the tissue samples is the same for all three plots. <i>p</i>-values by <i>t-test</i>.</p

    Both of miRs-143 and -145 repressed the development and invasion of PC-3 cells in bone.

    No full text
    <p>Male SCID mice were inoculated with PC-3 cells through the intra-tibial route. Skeletal lesions in radiographs are demonstrated by arrows (upper panel), and histologic analysis was carried by H&E-staining in which tumors were lined out by dashed line and marked as “T” (middle panel, taken under microscope 40×). Lesion scores of control and experimental specimens were shown in lower panels, where results were showed by means ± SEM of each group, <i>p</i> = 0.035 and <i>p</i> = 0.014 respectively.</p

    Detection of miRs-143 and -145 in primary PCa tissues by ISH.

    No full text
    <p>Sections at upper panel showed the identification of tumor cells and stromal cells by H&E-stainning. Sections at lower panel showed the location of miR-143 (left) and miR-145 (right) in PCa cells by LNA-ISH. Signals of miRs-143 and -145 were in purple blue. Pictures were taken under microscope 200×.</p

    Down-regulation of miRs-143 and -145 is associated with clinicopathological features of primary PCa.

    No full text
    <p><i>A and D,</i> The expression of miRs-143 or -145 in the patients with bone metastases was significantly lower than that without metastases (<i>t-test</i>, <i>p</i> = 0.039, <i>p</i> = 0.041, respectively). <i>B and E,</i> Tumor samples were divided into four groups with approximately equal sample sizes based on level of free PSA. The level of free PSA in patients with the primary tumor is presented on the x axis. The y axis is the mean of miRs-143 or -145 within each group. The bars represent the standard errors. There was a statistically significant Spearman correlation that characterized an inverse relationship between miRs-143 or -145 expression and free PSA (Spearman correlation = −0.501, <i>p</i> = 0.018; Spearman correlation = −0.536, <i>p</i> = 0.010). <i>F,</i> The level of total PSA is also correlated with miR-145 (Spearman correlation = −0.456, <i>p</i> = 0.033). <i>C and G,</i> The Gleason scores of primary tumor group are presented on the x axis. The y axis is the mean of miRs-143 or -145 within each group. The bars represent the standard errors. There was a statistically significant Spearman correlation that characterized an inverse relationship between miRs-143 or -145 expression and the Gleason scores (Spearman correlation = −0.574; <i>p</i> = 0.005; Spearman correlation = −0.546, <i>p</i> = 0.009).</p

    miRs-143 and -145 mediates bone metastasis of prostate cancer via regulating the EMT.

    No full text
    <p><i>A–B,</i> The levels of E-Cadherin, Fibronectin and Vimentin were shown in PC-3 (A) and LNCaP (B) cells. α-Tubulin was shown as loading control. <i>C,</i> The phenotype of PC-3 cell lines were photographed under microscope (200×).</p
    corecore