35 research outputs found

    Thermoelectric Skutterudites: Why and How High zT Can Be Achieved

    Get PDF
    Thermoelectric materials have been widely studied over the past few decades due to their ability to convert waste heat into useful electricity. Among various thermoelectric materials, skutterudite distinguishes itself in both space and terrestrial applications with its excellent thermoelectric performance, robust mechanical properties, and thermal stability. The thermoelectric excellence of skutterudites is mostly attributed to the low thermal conductivity due to the addition of filler atoms (R) into the void (one per primitive cell Co4Sb12). Essential though this is to high zT, the importance of the intrinsic electronic structure in skutterudites is often understated or ignored completely. In this thesis, by combining experimental and computational studies, the electronic origin of high thermoelectric performance of CoSb3-based skutterudites is investigated. The high zT was shown to be a direct result of the high valley degeneracy inherent to CoSb3, which is further enhanced by band convergence at high temperatures. This successfully explains why the optimum doping carrier concentration in n-CoSb3 skutterudites is independent on the type of fillers. With the electronic origin of high thermoelectric performance clarified, the thesis moves on to elaborate how to achieve high zT in skutterudite with the aid of phase diagram study. By mapping out the phase regions near the skutterudite phase on the isothermal section of the R-Co-Sb ternary phase diagram, the solubility region of the CoSb3 skutterudite phase can be determined along with the solubility limit of R, both of which are often determined in stable compositions resulting in a synthesis window. The temperature dependence of the filler solubility is also demonstrated experimentally. This overturns the general understanding that the filler solubility is a single value only dependent on the filler type. The temperature dependence of stable compositions enables easy carrier concentration tuning which allows the optimization of thermoelectric performance. High zT values are achieved in single In, Yb, Ce-CoSb3 skutterudites. The methodology applied here are not confined to n-CoSb3, but can be generalized to any other ternary systems

    Notoginsenoside R1 improves monocrotaline-induced pulmonary arterial hypertension via modulation NF-κB signaling in rats

    Get PDF
    Purpose: To investigate the potentials of notoginsenoside R1 (NGR1) in ameliorating inflammation and pulmonary vascular remodeling in rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT), and to examine the mechanisms underlying such effects. Methods: Eight-week-old male Sprague Dawley rats were randomly divided into groups: control, MCT, MCT+5mg/kg NGR1, MCT+12.5mg/kg NGR1, and MCT + 25 mg/kg NGR1. Right cardiac catheterization was used to measure pulmonary hemodynamics. Pulmonary morphology was evaluated with the aid of H & E staining. Serum levels of inflammatory cytokines were measured using ELISA, while levels of inflammation-associated factors in the lung were measured using RT-PCR. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and IκBα (nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha) protein levels were determined by western blot. Results: Pulmonary hemodynamics and pulmonary morphology worsened following MCT injection and were accompanied by NF-κB pathway activation and elevated levels of inflammation-associated factors. In contrast, MCT treatment followed by NGR1 treatment ameliorated MCT-induced PAH by improving pulmonary hemodynamics and pulmonary vascular remodeling while reducing NF-κB activation and levels of inflammation-associated factors. Conclusion: NGR1 exerts ameliorative effects on MCT-induced PAH by inhibiting NF-κB pathway. Therefore, NGR1 may be a new potential therapy for PAH

    Solubility design leading to high figure of merit in low-cost Ce-CoSb_3 skutterudites

    Get PDF
    CoSb_3-based filled skutterudite has emerged as one of the most viable candidates for thermoelectric applications in automotive industry. However, the scale-up commercialization of such materials is still a challenge due to the scarcity and cost of constituent elements. Here we study Ce, the most earth abundant and low-cost rare earth element as a single-filling element and demonstrate that, by solubility design using a phase diagram approach, the filling fraction limit (FFL) x in Ce_xCo_4Sb_(12) can be increased more than twice the amount reported previously (x=0.09). This ultra-high FFL (x=0.20) enables the optimization of carrier concentration such that no additional filling elements are needed to produce a state of the art n-type skutterudite material with a zT value of 1.3 at 850 K before nano-structuring. The earth abundance and low cost of Ce would potentially facilitate a widespread application of skutterudites

    Characterization of Lorenz number with Seebeck coefficient measurement

    Get PDF
    In analyzing zT improvements due to lattice thermal conductivity (κ_L ) reduction, electrical conductivity (σ) and total thermal conductivity (κ_(Total)) are often used to estimate the electronic component of the thermal conductivity (κ_E) and in turn κ_L from κ_L = ∼ κ_(Total) − LσT. The Wiedemann-Franz law, κ_E = LσT, where L is Lorenz number, is widely used to estimate κ_E from σ measurements. It is a common practice to treat L as a universal factor with 2.44 × 10^(−8) WΩK^(−2) (degenerate limit). However, significant deviations from the degenerate limit (approximately 40% or more for Kane bands) are known to occur for non-degenerate semiconductors where L converges to 1.5 × 10^(−8) WΩK^(−2) for acoustic phonon scattering. The decrease in L is correlated with an increase in thermopower (absolute value of Seebeck coefficient (S)). Thus, a first order correction to the degenerate limit of L can be based on the measured thermopower, |S|, independent of temperature or doping. We propose the equation: L=1.5+exp[−_(|S|)_(116)] (where L is in 10^(−8) WΩK^(−2) and S in μV/K) as a satisfactory approximation for L. This equation is accurate within 5% for single parabolic band/acoustic phonon scattering assumption and within 20% for PbSe, PbS, PbTe, Si_(0.8) Ge _(0.2) where more complexity is introduced, such as non-parabolic Kane bands, multiple bands, and/or alternate scattering mechanisms. The use of this equation for L rather than a constant value (when detailed band structure and scattering mechanism is not known) will significantly improve the estimation of lattice thermal conductivity

    Dislocation strain as the mechanism of phonon scattering at grain boundaries

    Get PDF
    Thermal conductivities of polycrystalline thermoelectric materials are satisfactorily calculated by replacing the commonly used Casimir model (freqeuncy-independent) with grain boundary dislocation strain model (frequency-dependent) of Klemens. It is demonstrated that the grain boundaries are better described as a collection of dislocations rather than perfectly scattering interfaces

    High thermoelectric performance in (Bi_(0.25)Sb_(0.75)_2 Te_3 due to band convergence and improved by carrier concentration control

    Get PDF
    Bi_2Te_3 has been recognized as an important cooling material for thermoelectric applications. Yet its thermoelectric performance could still be improved. Here we propose a band engineering strategy by optimizing the converging valence bands of Bi_2Te_3 and Sb_2Te_3 in the (Bi_(1−x)Sb_x)_2Te_3 system when x = 0.75. Band convergence successfully explains the sharp increase in density-of-states effective mass yet relatively constant mobility and optical band gap measurement. This band convergence picture guides the carrier concentration tuning for optimum thermoelectric performance. To synthesize homogeneous textured and optimally doped (Bi0.25Sb0.75)2Te3, excess Te was chosen as the dopant. Uniform control of the optimized thermoelectric composition was achieved by zone-melting which utilizes separate solidus and liquidus compositions to obtain zT = 1.05 (at 300 K) without nanostructuring

    Thermal stability of Mg_2Si_(0.4)Sn_(0.6) in inert gases and atomic-layer-deposited Al_2O_3 thin film as a protective coating

    Get PDF
    Mg_2Si_(1−x)Sn_x solid solutions are promising thermoelectric materials to be applied in vehicle waste-heat recovery. Their thermal stability issue, however, needs to be addressed before the materials can be applied in practical thermoelectric devices. In this work, we studied the crystal structure and chemical composition of Mg_2Si_(1−x)Sn_x in inert gas atmosphere up to 823 K. We found that the sample was oxidized even in high-purity inert gases. Although no obvious structural change has been found in the slightly oxidized sample, carrier concentration decreased significantly since oxidation creates Mg vacancies in the lattice. We demonstrated that an atomic-layer deposited Al_2O_3 coating can effectively protect Mg_2Si_(1−x)Sn_x from oxidation in inert gases and even in air. In addition, this Al_2O_3 thin film also provides in situ protection to the Sb-doped Mg_2Si_(1−x)Sn_x samples during the laser-flash measurement and therefore eliminates the measurement error that occurs in uncoated samples as a result of sample oxidation and graphite exfoliation issues

    Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb_3 skutterudites

    Get PDF
    Filled skutterudites R_xCo_4Sb_(12) are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-type CoSb3 is typically attributed to threefold degeneracy at the conduction band minimum accompanied by linear band behaviour at higher carrier concentrations, which is thought to be related to the increase in effective mass as the doping level increases. Using combined experimental and computational studies, we show instead that a secondary conduction band with 12 conducting carrier pockets (which converges with the primary band at high temperatures) is responsible for the extraordinary thermoelectric performance of n-type CoSb_3 skutterudites. A theoretical explanation is also provided as to why the linear (or Kane-type) band feature is not beneficial for thermoelectrics

    Dislocation strain as the mechanism of phonon scattering at grain boundaries

    Get PDF
    Thermal conductivities of polycrystalline thermoelectric materials are satisfactorily calculated by replacing the commonly used Casimir model (freqeuncy-independent) with grain boundary dislocation strain model (frequency-dependent) of Klemens. It is demonstrated that the grain boundaries are better described as a collection of dislocations rather than perfectly scattering interfaces

    Thermal stability of Mg_2Si_(0.4)Sn_(0.6) in inert gases and atomic-layer-deposited Al_2O_3 thin film as a protective coating

    Get PDF
    Mg_2Si_(1−x)Sn_x solid solutions are promising thermoelectric materials to be applied in vehicle waste-heat recovery. Their thermal stability issue, however, needs to be addressed before the materials can be applied in practical thermoelectric devices. In this work, we studied the crystal structure and chemical composition of Mg_2Si_(1−x)Sn_x in inert gas atmosphere up to 823 K. We found that the sample was oxidized even in high-purity inert gases. Although no obvious structural change has been found in the slightly oxidized sample, carrier concentration decreased significantly since oxidation creates Mg vacancies in the lattice. We demonstrated that an atomic-layer deposited Al_2O_3 coating can effectively protect Mg_2Si_(1−x)Sn_x from oxidation in inert gases and even in air. In addition, this Al_2O_3 thin film also provides in situ protection to the Sb-doped Mg_2Si_(1−x)Sn_x samples during the laser-flash measurement and therefore eliminates the measurement error that occurs in uncoated samples as a result of sample oxidation and graphite exfoliation issues
    corecore