52 research outputs found
Recommended from our members
Intrinsically disordered proteins access a range of hysteretic phase separation behaviors.
The phase separation behavior of intrinsically disordered proteins (IDPs) is thought of as analogous to that of polymers that undergo equilibrium lower or upper critical solution temperature (LCST and UCST, respectively) phase transition. This view, however, ignores possible nonequilibrium properties of protein assemblies. Here, by studying IDP polymers (IDPPs) composed of repeat motifs that encode LCST or UCST phase behavior, we discovered that IDPs can access a wide spectrum of nonequilibrium, hysteretic phase behaviors. Experimentally and through simulations, we show that hysteresis in IDPPs is tunable and that it emerges through increasingly stable interchain interactions in the insoluble phase. To explore the utility of hysteretic IDPPs, we engineer self-assembling nanostructures with tunable stability. These findings shine light on the rich phase separation behavior of IDPs and illustrate hysteresis as a design parameter to program nonequilibrium phase behavior in self-assembling materials
Cellulose synthase âclass specific regionsâ are intrinsically disordered and functionally undifferentiated
Cellulose synthases (CESAs) are glycosyltransferases that catalyze formation of cellulose microfibrils in plant cell walls. Seed plant CESA isoforms cluster in six phylogenetic clades, whose nonâinterchangeable members play distinct roles within cellulose synthesis complexes (CSCs). A âclass specific regionâ (CSR), with higher sequence similarity within versus between functional CESA classes, has been suggested to contribute to specific activities or interactions of different isoforms. We investigated CESA isoform specificity in the moss, Physcomitrella patens (Hedw.) B. S. G. to gain evolutionary insights into CESA structure/function relationships. Like seed plants, P. patens has oligomeric rosetteâtype CSCs, but the PpCESAs diverged independently and form a separate CESA clade. We showed that P. patens has two functionally distinct CESAs classes, based on the ability to complement the gametophoreânegative phenotype of a ppcesa5 knockout line. Thus, nonâinterchangeable CESA classes evolved separately in mosses and seed plants. However, testing of chimeric moss CESA genes for complementation demonstrated that functional classâspecificity is not determined by the CSR. Sequence analysis and computational modeling showed that the CSR is intrinsically disordered and contains predicted molecular recognition features, consistent with a possible role in CESA oligomerization and explaining the evolution of classâspecific sequences without selection for classâspecific function
Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex
A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the ÎČ-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains
- âŠ