20 research outputs found

    Gradient high performance liquid chromatography method for simultaneous determination of ilaprazole and its related impurities in commercial tablets

    Get PDF
    AbstractA methodology (HPLC) proposed in this paper for simultaneously quantitative determination of ilaprazole and its related impurities in commercial tablets was developed and validated. The chromatographic separation was carried out by gradient elution using an Agilent C8 column (4.6 mm × 250 mm, 5 μm) which was maintained at 25 °C. The mobile phase composed of solvent A (methanol) and solvent B (solution consisting 0.02 mmol/l monopotassium phosphate and 0.025 mmol/l sodium hydroxide) was at a flow rate of 1.0 ml/min. The samples were detected and quantified at 237 nm using an ultraviolet absorbance detector. Calibration curves of all analytes from 0.5 to 3.5 μg/ml were good linearity (r ≥ 0.9990) and recovery was greater than 99.5% for each analyte. The lower limit of detection (LLOD) and quantification (LOQ) of this analytical method were 10 ng/ml and 25 ng/ml for all impurities, respectively. The stress studies indicated that the degradation products could not interfere with the detection of ilaprazole and its related impurities and the assay can thus be considered stability-indicating. The method precisions were in the range of 0.41–1.21 while the instrument precisions were in the range of 0.38–0.95 in terms of peak area RSD% for all impurities, respectively. This method is considered stability-indicating and is applicable for accurate and simultaneous measuring of the ilaprazole and its related impurities in commercial enteric-coated tablets

    Macrophage Dysfunction Impairs Resolution of Inflammation in the Wounds of Diabetic Mice

    Get PDF
    Background: Chronic inflammation is a characteristic feature of diabetic cutaneous wounds. We sought to delineate novel mechanisms involved in the impairment of resolution of inflammation in diabetic cutaneous wounds. At the wound-site, efficient dead cell clearance (efferocytosis) is a pre-requisite for the timely resolution of inflammation and successful healing. Methodology/Principal Findings: Macrophages isolated from wounds of diabetic mice showed significant impairment in efferocytosis. Impaired efferocytosis was associated with significantly higher burden of apoptotic cells in wound tissue as well as higher expression of pro-inflammatory and lower expression of anti-inflammatory cytokines. Observations related to apoptotic cell load at the wound site in mice were validated in the wound tissue of diabetic and non-diabetic patients. Forced Fas ligand driven elevation of apoptotic cell burden at the wound site augmented pro-inflammatory and attenuated anti-inflammatory cytokine response. Furthermore, successful efferocytosis switched wound macrophages from proinflammatory to an anti-inflammatory mode. Conclusions/Significance: Taken together, this study presents first evidence demonstrating that diabetic wounds suffer from dysfunctional macrophage efferocytosis resulting in increased apoptotic cell burden at the wound site. This burden, in turn, prolongs the inflammatory phase and complicates wound healing

    Protective Role of Rabbit Nucleotide-Binding Oligomerization Domain-2 (NOD2)-Mediated Signaling Pathway in Resistance to Enterohemorrhagic Escherichia coli Infection

    Get PDF
    Nucleotide-binding oligomerization domain 2 (NOD2), a member of the NOD-like receptors (NLRs) family that is well-known to play a key role in innate immune responses and is involved in innate antibacterial responses. In this study, rabbit NOD2 (rNOD2) was cloned from rabbit kidney (RK) cells. It was distributed in various tissues, and the highest level of rNod2 was detected in spleen. Moreover, the expression of rNod2 was significantly upregulated in the heart, liver, and spleen induced by enterohemorrhagic Escherichia coli (EHEC). Overexpression of rNOD2 induced the expression of pro-inflammatory cytokine, including Il1β, Il6, Ifn-γ, and Tnf, as well as defensins, including Defb124, Defb125, and Defb128 through the nuclear factor (NF)-κB signaling pathway. Furthermore, overexpression of rNOD2 inhibited the growth of EHEC, and knockdown of rNOD2 or inhibition of the NF-κB pathway promoted its replication. In addition, our results suggest that rNOD2 can significantly activate NF-κB signaling and trigger antibacterial defenses to increase the expression of pro-inflammatory cytokine and defensins after stimulation by EHEC. These findings are useful to further understanding the innate immune system of rabbits and providing a new perspective for the prevention of bacterial diseases in rabbits

    Role of Notch signaling in regulating innate immunity and inflammation in health and disease

    No full text
    ABSTRACT The Notch signaling pathway is conserved from Drosophila to mammals and is critically involved in developmental processes. In the immune system, it has been established that Notch signaling regulates multiple steps of T and B cell development in both central and peripheral lymphoid organs. Relative to the well documented role of Notch signaling in lymphocyte development, less is known about its role in regulating myeloid lineage development and function, especially in the context of acute and chronic inflammation. In this review article, we will describe the evidence accumulated during the recent years to support a key regulatory role of the Notch pathway in innate immune and inflammatory responses and discuss the potential implications of such regulation for pathogenesis and therapy of inflammatory disorders

    RBP-J is required for M2 macrophage polarization in response to chitin and mediates expression of a subset of M2 genes

    Get PDF
    Abstract Development of alternatively activated (M2) macrophage phenotypes is a complex process that is coordinately regulated by a plethora of pathways and factors. Here, we report that RBP-J, a DNA-binding protein that integrates signals from multiple pathways including the Notch pathway, is critically involved in polarization of M2 macrophages. Mice deficient in RBP-J in the myeloid compartment exhibited impaired M2 phenotypes in vivo in a chitin-induced model of M2 polarization. Consistent with the in vivo findings, M2 polarization was partially compromised in vitro in Rbpj-deficient macrophages as demonstrated by reduced expression of a subset of M2 effector molecules including arginase 1. Functionally, myeloid Rbpj deficiency impaired M2 effector functions including recruitment of eosinophils and suppression of T cell proliferation. Collectively, we have identified RBP-J as an essential regulator of differentiation and function of alternatively activated macrophages

    MicroRNA-21: A Positive Regulator for Optimal Production of Type I and Type III Interferon by Plasmacytoid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) are the major producers of type I and type III interferons (IFNs) that play essential roles in host antiviral immunity. MicroRNAs (miRs) are small, noncoding RNAs that can modulate many immune processes. Although molecular regulation of type I IFN production by pDCs has been studied extensively, the regulation of type III IFN production has not been studied thoroughly, particularly at posttranscriptional level. We show here that miR-21 is an essential positive regulator for the production of both IFN-α and IFN-λ by pDCs and for promoting host defense against viral infection. miR-21 was markedly upregulated in toll-like receptor (TLR)-activated pDCs and was crucial for TLR7/9 ligand- or herpesvirus-induced production of IFN-α and IFN-λ by pDCs. miR-21-deficient pDCs produced significantly lower levels of IFN-α and IFN-λ on activation than those by wild-type pDCs. Impaired antiviral immune responses were also observed in miR-21-deficient mice. Mechanistically, we identified phosphatase and tensin homolog (PTEN) as the major target of miR-21 in pDCs, and miR-21 deficiency resulted in increased expression of PTEN that suppressed TLR-mediated activation of PI3K-Akt-mTOR signaling in pDCs. Hence, our findings provide evidence that miR-21 positively regulates both IFN-α and IFN-λ production and identify an important role for miR-21 in regulating the function of pDCs and in host antiviral immunity

    The layered structure model for winonaite parent asteroid implicated by textural and mineralogical diversity

    No full text
    Abstract The winonaites are primitive achondrites that are associated with IAB iron meteorites. They provide valuable insights into differentiation processes on asteroids in the early Solar System. However, there is still little understanding of the lithological diversity as well as the structure of the winonaite parent asteroid. In this work, we report the petrologic texture and mineralogy of a suite of winonaites (i.e., Northwest Africa (NWA) 725, NWA 6448, NWA 4024, Grove Mountains (GRV) 022890, GRV 021663, and Sahara (SAH) 02029) that exhibit a wide diversity of petrographic textures from primitive chondritic texture to coarse-grained equigranular texture. In particular, we recognized an unusual winonaite (SAH 02029) with a distinctive mineralogy and mineral chemistry (e.g., depleted in troilite, plagioclase contains melt inclusions, high plagioclase An values, and LREE-depleted clinopyroxene). The petrological and mineralogical features of SAH 02029 indicate that this meteorite has undergone silicate partial melting and may represent the residue of ~ 5–10 vol% partial melting. The textural and mineralogical diversity among winonaites suggests that the winonaite-IAB parent asteroid would have formed a four-layered structure during its evolution history: (1) surface layer consisting of precursor chondritic materials; (2) subsurface layer composed of diverse lithologies that experienced limited metamorphism and FeNi–FeS partial melting; (3) deep residues of silicate partial melting; and (4) interior layer consisting of incomplete differentiation metal pools. This conclusion enables us to establish constraints on the evolution history of winonaite-IAB parent body
    corecore