28 research outputs found

    Characterize the assembly of dark matter halos with protohalo size histories: I. Redshift evolution, relation to descendant halos, and halo assembly bias

    Full text link
    We propose a novel method to quantify the assembly histories of dark matter halos with the redshift evolution of the mass-weighted spatial variance of their progenitor halos, i.e. the protohalo size history. We find that the protohalo size history for each individual halo at z~0 can be described by a double power-law function. The amplitude of the fitting function strongly correlates to the central-to-total stellar mass ratios of descendant halos. The variation of the amplitude of the protohalo size history can induce a strong halo assembly bias effect for massive halos. This effect is detectable in observation using the central-to-total stellar mass ratio as a proxy of the protohalo size. The correlation to the descendant central-to-total stellar mass ratio and the halo assembly bias effect seen in the protohalo size are much stronger than that seen in the commonly adopted half-mass formation time derived from the mass accretion history. This indicates that the information loss caused by the compression of halo merger trees to mass accretion histories can be captured by the protohalo size history. Protohalo size thus provides a useful quantity to connect protoclusters across cosmic time and to link protoclusters with their descendant clusters in observations.Comment: 19 pages, 12 + 8 figures, comments are welcome

    Abnormalities in circulating plasmacytoid dendritic cells in patients with systemic lupus erythematosus

    Get PDF
    Introduction: Dendritic cells (DCs) are capable of inducing immunity or tolerance. Previous studies have suggested plasmacytoid DCs (pDCs) are pathogenic in systemic lupus erythematosus (SLE). However, the functional characteristics of directly isolated peripheral circulating blood pDCs in SLE have not been evaluated previously.Methods: Peripheral blood pDCs from 62 healthy subjects and 58 SLE patients were treated with apoptotic cells derived from polymorphonuclear cells (PMNs). Antigen loaded or unloaded pDCs were then co-cultured with autologous or allogenous T cells. Changes in T cell proliferation, cell surface CD25 expression, intracellular Foxp3 expression and cytokine production were evaluated. pDCs that had captured apoptotic PMNs (pDCs + apoPMNs were also studied for their cytokine production (interferon (IFN)-alpha, interleukin (IL)-6, IL-10, IL-18) and toll like receptor (TLR) expression.Results: Circulating pDCs from SLE patients had an increased ability to stimulate T cells when compared with control pDCs. Using allogenous T cells as responder cells, SLE pDCs induced T cell proliferation even in the absence of apoptotic PMNs. In addition, healthy pDCs + apoPMNs induced suppressive T regulatory cell features with increased Foxp3 expression in CD4 + CD25 + cells while SLE pDCs + apoPMNs did not. There were differences in the cytokine profile of pDCs that had captured apoptotic PMNs between healthy subjects and patients with SLE. Healthy pDCs + apoPMNs showed decreased production of IL-6 but no significant changes in IL-10 and IL-18. These pDCs + apoPMNs also showed increased mRNA transcription of TLR9. On the other hand, while SLE pDCs + apoPMNs also had decreased IL-6, there was decreased IL-18 mRNA expression and persistent IL-10 protein synthesis. In addition, SLE pDCs lacked TLR9 recruitment.Conclusions: We have demonstrated that peripheral circulating pDCs in patients with SLE were functionally abnormal. They lacked TLR9 expression, were less capable of inducing regulatory T cell differentiation and had persistent IL-10 mRNA expression following the capture of apoptotic PMNs. We suggest circulating pDCs may be pathogenically relevant in SLE. © 2010 Jin et al.; licensee BioMed Central Ltd.published_or_final_versio

    Luminous Self-Assembled Fibers of Azopyridines and Quantum Dots Enabled by Synergy of Halogen Bond and Alkyl Chain Interactions

    No full text
    Herein, a simple approach for the fabrication of luminous self-assembled fibers based on halogen-bonded azopyridine complexes and oleic acid-modified quantum dots (QDs) is reported. The QDs uniformly align on the edge of the self-assembled fibers through the formation of van der Waals force between the alkyl chain of oleic acid on the QD surface and the alkyl chain of the halogen-bonded complexes, 15Br or 15I. Furthermore, the intermolecular interaction mechanism was elucidated by using Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and density functional theory (DFT) calculations. This approach results in retention of the fluorescence properties of the QDs in the fibers. In addition, the bromine-bonded fibers can be assembled into tailored directional fibers upon evaporation of the solvent (tetrahydrofuran) when using capillaries via the capillary force. Interestingly, the mesogenic properties of the halogen-bonded complexes are preserved in the easily prepared halogen-bonded fluorescent fibers; this provides new insight into the design of functional self-assembly materials

    Functional characterization of NBS-LRR genes reveals an NBS-LRR gene that mediates resistance against Fusarium wilt

    No full text
    Abstract Background Most disease resistance (R) genes in plants encode proteins that contain leucine-rich-repeat (LRR) and nucleotide-binding site (NBS) domains, which belong to the NBS-LRR family. The sequenced genomes of Fusarium wilt-susceptible Vernicia fordii and its resistant counterpart, Vernicia montana, offer significant resources for the functional characterization and discovery of novel NBS-LRR genes in tung tree. Results Here, we identified 239 NBS-LRR genes across two tung tree genomes: 90 in V. fordii and 149 in V. montana. Five VmNBS-LRR paralogous were predicted in V. montana, and 43 orthologous were detected between V. fordii and V. montana. The orthologous gene pair Vf11G0978-Vm019719 exhibited distinct expression patterns in V. fordii and V. montana: Vf11G0978 showed downregulated expression in V. fordii, while its orthologous gene Vm019719 demonstrated upregulated expression in V. montana, indicating that this pair may be responsible for the resistance to Fusarium wilt in V. montana. Vm019719 from V. montana, activated by VmWRKY64, was shown to confer resistance to Fusarium wilt in V. montana by a virus-induced gene silencing (VIGS) experiment. However, in the susceptible V. fordii, its allelic counterpart, Vf11G0978, exhibited an ineffective defense response, attributed to a deletion in the promoter’s W-box element. Conclusions This study provides the first systematic analysis of NBS-LRR genes in the tung tree and identifies a candidate gene that can be utilized for marker-assisted breeding to control Fusarium wilt in V. fordii

    Performance improvement induced by membrane treatment in proton exchange membrane water electrolysis cells

    No full text
    Hydrogen has been widely accepted as the best alternative energy carrier to store intermittent renewable energies. Proton exchange membrane water electrolysis (PEMWE) represents a promising technology to produce highly pure hydrogen with high efficiency and low footprint. While great progress has been made on components, materials and even fabrication processes, new materials or complicated processes still require refinement in the process of continuously improving PEMWE performance and durability. In this study, we demonstrate a facile treatment on membranes, aiming at improving cell performance at low costs. By adopting the hydration in DI water or 0.5 M H2SO4, or by varying the treatment sequence with the catalyst layer deposition, the PEMWE performance was tuned with the overpotential improvement as high as 50 mV at 2.0 A cm(-2). The PEMWE cells after different treatments were characterized both ex-situ and in-situ, and the mechanism was also proposed. The H2SO4 treatment swelled the micro micelle structure of the Nafion membranes, resulting in a higher proton conductivity and better cell performance compared with those from DI water treatment. In addition, the treatment sequence also had great impact, and the treatment after the catalyst layer deposition would result in better performance due to the reduced resistance and better kinetics. Not only the types of membrane, but also the thickness should be measured and reported when tested, which is more critical when compared across the published works from different groups. This work could also provide a guideline for future membrane treatment and PEMWE cell testing. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved
    corecore