20 research outputs found

    An Impulse Dynamic Model for Computer Worms

    No full text
    A worm spread model concerning impulsive control strategy is proposed and analyzed. We prove that there exists a globally attractive virus-free periodic solution when the vaccination rate is larger than θ1. Moreover, we show that the system is uniformly persistent if the vaccination rate is less than θ1. Some numerical simulations are also given to illustrate our main results

    An Impulse Model for Computer Viruses

    No full text
    Computer virus spread model concerning impulsive control strategy is proposed and analyzed. We prove that there exists a globally attractive infection-free periodic solution when the vaccination rate is larger than θ0. Moreover, we show that the system is uniformly persistent if the vaccination rate is less than θ1. Some numerical simulations are finally given to illustrate the main results

    A Stochastic Dynamic Model of Computer Viruses

    Get PDF
    A stochastic computer virus spread model is proposed and its dynamic behavior is fully investigated. Specifically, we prove the existence and uniqueness of positive solutions, and the stability of the virus-free equilibrium and viral equilibrium by constructing Lyapunov functions and applying Ito's formula. Some numerical simulations are finally given to illustrate our main results

    Prognostic Biomarker SPOCD1 and Its Correlation with Immune Infiltrates in Colorectal Cancer

    No full text
    The biological role of the spen paralogue and orthologue C-terminal domain containing 1 (SPOCD1) has been investigated in human malignancies, but its function in colorectal cancer (CRC) is unclear. This study investigated the association between SPOCD1 expression and clinicopathological features of CRC cases, as well as its prognostic value and biological function based on large-scale databases and clinical samples. The results showed that the expression level of SPOCD1 was elevated in CRC, which was generally associated with shortened survival time and poor clinical indexes, including advanced T, N, and pathologic stages. Multivariate Cox regression analysis showed that elevated SPOCD1 expression was an independent factor for poor prognosis in CRC patients. Functional enrichment analysis of SPOCD1 and its co-expressed genes revealed that SPOCD1 could act as an oncogene by regulating gene expression in essential functions and pathways of tumorigenesis, such as extracellular matrix organization, chemokine signaling pathways, and calcium signaling pathways. In addition, immune cell infiltration results showed that SPOCD1 expression was associated with various immune cells, especially macrophages. Furthermore, our findings suggested a possible function for SPOCD1 in the polarization of macrophages from M1 to M2 in CRC. In conclusion, SPOCD1 is a promising diagnostic and prognostic marker for CRC, opening new avenues for research and treatment

    Prognostic Biomarker SPOCD1 and Its Correlation with Immune Infiltrates in Colorectal Cancer

    No full text
    The biological role of the spen paralogue and orthologue C-terminal domain containing 1 (SPOCD1) has been investigated in human malignancies, but its function in colorectal cancer (CRC) is unclear. This study investigated the association between SPOCD1 expression and clinicopathological features of CRC cases, as well as its prognostic value and biological function based on large-scale databases and clinical samples. The results showed that the expression level of SPOCD1 was elevated in CRC, which was generally associated with shortened survival time and poor clinical indexes, including advanced T, N, and pathologic stages. Multivariate Cox regression analysis showed that elevated SPOCD1 expression was an independent factor for poor prognosis in CRC patients. Functional enrichment analysis of SPOCD1 and its co-expressed genes revealed that SPOCD1 could act as an oncogene by regulating gene expression in essential functions and pathways of tumorigenesis, such as extracellular matrix organization, chemokine signaling pathways, and calcium signaling pathways. In addition, immune cell infiltration results showed that SPOCD1 expression was associated with various immune cells, especially macrophages. Furthermore, our findings suggested a possible function for SPOCD1 in the polarization of macrophages from M1 to M2 in CRC. In conclusion, SPOCD1 is a promising diagnostic and prognostic marker for CRC, opening new avenues for research and treatment

    IDH1 K224 acetylation promotes colorectal cancer via miR-9-5p/NHE1 axis-mediated regulation of acidic microenvironment

    No full text
    Summary: The acidic microenvironment is considered an important factor in colorectal cancer (CRC) that contributes to malignant transformation. However, the underlying mechanism remains unclear. In a previous study, we confirmed that IDH1 K224 deacetylation promotes enzymatic activity and the production of α-KG. Here, we further investigate the effect of IDH1 hyperacetylation on the CRC acidic microenvironment. We demonstrate that increased α-KG affects hydroxylation of Ago2 and mediates miR-9-5p targeting NHE1 protein. Knockdown of NHE1 dramatically attenuates CRC cell proliferation and migration by restricting transport of intracellular H+ out of cells. Furthermore, we show that miR-9-5p is the microRNA with the most significant difference in the alteration of IDH1 K224 acetylation and can downregulate NHE1 mRNA. Our data also indicate that hydroxylation stabilizes Ago2, which in turn promotes miR-9-5p activity. Taken together, our results reveal a novel mechanism through which IDH1 deacetylation regulates the cellular acidic microenvironment and inhibits CRC metastasis

    Comprehensive analysis of the transcriptome-wide m6A methylome in colorectal cancer by MeRIP sequencing

    No full text
    Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in various cancers, making it essential to profile m6A modifications at a transcriptome-wide scale in colorectal cancer (CRC). In the present study, we performed high-throughput sequencing to determine the m6A methylome in CRC. We obtained six pairs of CRC samples and tumour-adjacent normal tissues from Peking University People’s Hospital. We used MeRIP-seq to determine that compared to the tumour-adjacent normal tissues, the CRC samples had 1343 dysregulated m6A peaks, and 625 m6A peaks were significantly upregulated and 718 m6A peaks were significantly downregulated. Genes with altered m6A peaks play critical roles in regulating glucose metabolism, RNA metabolism, and cancer stem cells. Furthermore, we identified 297 hypermethylated m6A peaks and 328 hypomethylated m6A peaks in mRNAs through conjoint analyses of MeRIP-seq and RNA-seq data. After analysing these genes with differentially methylated m6A peaks and synchronously differential expression, we identified four genes (WDR72, SPTBN2, MORC2, and PARM1) that were associated with prognosis of colorectal cancer patients by searching The Cancer Genome Atlas (TCGA). Our study suggests that m6A modifications play important roles in tumour progression and survival of CRC patients. The results also indicate that modulating m6A modifications may represent an alternative strategy to predict the survival of cancer patients and interfere with tumour progression in the future
    corecore